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Abstract: In this paper, the V H
∞ control theory on an infinite dimensional algebra to itself is presented. In order to

establish the V H
∞ control theory, the concept and the properties of a meromorphic mapping and the theory

of V H
∞ spaces on an infinite dimensional algebra to itself are founded.

1 INTRODUCTION

The theory of Hp-spaces and the H∞ control theory
on finite dimensional spaces have been summarized
by C. G. Hu and C. C. Yang (Hu and Yang, 1992), and
B. A. Francis and J. C. Doyle ((Francis, 1987), (Fran-
cis and Doyle, 1987)) respectively. In 1993, B. V.
Keulen extended the H∞ control theory on finite di-
mensional spaces to range in the infinite dimensional
Hilbert space (Keulen, 1993). In 2002, C. G. Hu and
L. X. Ma extended the result of Keulen to the locally
convex space containing the Hilbert space (Hu and
Ma, 2002). In this article, the V H∞ control theory on
an infinite dimensional algebra to itself is presented in
Section 4. For this aim, the meromorphic mapping (in
Section 2) and the theory of V Hp spaces on an infi-
nite dimensional algebra without appearance in books
((Dineen, 1981) and (Mujica, 1986)) respectively, are
given (in Section 3). The V H∞ control theory can
enlarge the scope of solutions in the control theory.
So the research on these problems can develop and
complete the control theory.

2 MEROMORPHIC MAPPINGS

Let S be the sequence space of all complex vari-
ables. Here z = (z1, z2,. . . , zj , . . .) ∈ S and zj
is in the complex plane Cj for any j. If z =
(z1,z2, . . . ,zj , . . .) ∈ S, then the quasinorm over S
is defined by

|||z||| =

∞
∑

j=1

(

2

3

)j
|zj |

1 + |zj |
.

The multiplication of z and w in S can be defined
by

zw = (z1w1, z2w2, . . . , zjwj , . . .).

From the definition of the multiplication we may
derive

|||zw||| ≤ |||z||||||w|||, zk = (zk1 , . . . , z
k
j , . . .)

for any k > 0. Thus S is a Fréchet algebra.
Assume for simplicity, that L =

∏∞

j=1 Lj is a
manifold over S, where each Lj ⊂ Cj is a simple
path, and that f(t) = (f1(t), . . . , fj(t), . . .) : L→ S ,
where t is over L and t = (t1, t2, . . . , tj ,
. . .) ∈ S . Let Ds =

∏∞

j=1Dsj be a domain over S,
where Dsj is a domain over Cj .

Theorem 2.1. A mapping f : Ds → S is holomor-
phic if and only if f can be denoted by

f(z) = (f1(z1), f2(z2), . . . , fj(zj), . . .) ∈ S,

where z = (z1, z2, . . . , zj , . . .) ∈ S and
fj(zj) : Cj → Cj is a holomorphic function.

Proof. If f is a holomorphic mapping in Ds, then for
any z0 = (z01, z02, . . . , z0j , . . .) ∈ Ds, there exists a
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neighborhood U(z0) ⊂ Ds such that

f(z) =
∑∞

k=0 α(k)(z − z0)
k

=
∑∞

k=0(αk1, αk2, . . . , αkj , . . .)

((z1 − z01)
k, . . . , (zj − z0j)

k, . . .)
)

=
(
∑∞

k=0 αk1(z1 − z01)
k, . . . ,

∑∞

k=0 αkj(zj − z0j)
j , . . .

)

=
(

f01(z1 − z01), f02(z2 − z02), . . . ,

f0j(zj − z0j), . . .
)

,

for z ∈ U(z0), where α(k) = (αk1, αk2, . . . , αkj ,
. . .) ∈ S and

f0j(zj − z0j) =
∞
∑

k=0

αkj(zj − z0j)
k.

Analytic continuation and the Uniqueness Theorem
of holomorphic mappings in complex analysis yield
that f(z) can be written as

f(z) =
(

f1(z1), f2(z2), . . . , fj(zj), . . .
)

∈ S.

This is just required conclusion.
Conversely, because the above each step is invert-

ible, f is holomorphic in Ds.
This proof is ended.

A meromorphic mapping on S without appearance
in books ((Dineen, 1981) and (Mujica, 1986)) respec-
tively, may be defined as follows:

Definition 2.1. A mapping f on S is called meromor-
phic if its each component fj(zj) is a meromorphic
mapping of zj over Cj for each j.

Remark. Using the similar method to Definition 2.1
we may define a meromorphic mapping on a domain
Ds =

∏∞

j=1Dsj , where Dsj in Cj is a domain.

Let
{

z(k)(0)
}∞

k=1
=
{

(z
(0)
k1 , . . . , z

(0)
kj , . . .)

}∞

k=1
(2.1)

be an increasing sequence with distinct complex
elements tending to the infinity∞ = (∞, . . . ,∞,
. . .) in the sense of the quasinorm. From the above
definition for convenience sake, without loss gener-
ality we may assume that every fj is a meromorphic
function of zj which can be written for any j as

∞
∑

k=1

∞
∑

ık%j=−mkj

αk%j(zj − z
(0)
kj )

ık%j ,

where −∞ < −m = inf{ık%j : k, %, j = 1, 2, . . .}
< 0 and the following conditions are satisfied:

(α){z(0)kj } for any k, j has no any finite limit point;
(β)−∞ < inf{−mkj}.
Under the preceding conditions z(k)(0) is ca-

lled a pole of f.
On a meromorphic mapping f(z) on S there is the

following conclusion.

Theorem 2.2. Let
{

z(k)(0)
}∞

k=1
satisfy (α)–(β), and

let
{

~(k)(z − z(k)(0))
}∞

k=1

=
{

(hk1(z1 − z
(0)
k1 ), . . . , hkj(zj − z

(0)
kj ), . . .)

}∞

k=1

be a sequence, where

hkj(zj − z
(0)
kj ) =

−1
∑

−mk

αk%j(zj − z
(0)
kj )

ık%j ,

and the coefficient of the first term after the equal-
sign in the above formula is not 0. Then there exists a
meromorphic mapping

f(z) =

∞
∑

k=1

∞
∑

ık%=−mk

α(k%)(z − z(k)(0))ık% ,

its poles coincide with (2.1), and its principal part at
the pole z(k)(0) equals ~(k), for each k = 0, 1, 2, . . .
and α(k%) = (αk%1, . . . , αk%j , . . .) ∈ S.

Proof. In the proof of Theorem 2.1 we replace the
power series

∑∞

k=0 αkj(zj − z0j)
k by the Laurent

series
∑∞

−mk
αk%j(zj − z

(0)
kj )

ık%j . And using the
famous Mittag–Leffler’s theorem in complex analysis
for each component we may obtain required result.
This proof is finished.

Next, integrals can be defined on a manifold L in
S as follows.

Definition 2.2. Let Lj be any closed rectifiable
Jordan curve contained in a simply connected subdo-
main of a domain Gj in Cj and L =

∏∞

j=1 Lj . Let
D+

j be the interior of Lj and D+ =
∏∞

j=1D
+
j . Then

D+ is called the interior of L, and

∫

L

f(z)dz :=

(

∫

L1

f1(z1)dz1, ...,

∫

Lj

fj(zj)dzj , ...

)

in S, where f = (f1, ..., fj , ...) is defined on S.
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Theorem 2.3. Let f(z) be a single S-valued holo-
morphic mapping on G. Then
(A)(Cauchy’s integral theorem).

∫

L

f(z)dz = 0,

where G =
∏∞

j=1Gj;

(B)(Cauchy’s integral formula).

1

2πi

∫

L

f(t)(t− z)−1dz = f(z),

where z ∈ D+ ⊂ G, and (t− z)−1 exists.

Definition 2.3. A subset X0 of X is called a base-real
subspace of X and ū is called the conjugate element
of u if following conditions hold:

a) X is a vector space on C.
b) X0 is a vector subspace of X on R.
c) For every u ∈ X , there exists an ū(∈ X) such that

u + ū ∈ X0 and i(u − ū) ∈ X0 hold satisfying a
unique decomposition u = ξ + ηi for ξ, η ∈ X0.

d) X0 ∩ iX0 = {0}, where 0 is the zero element.
Theorem 2.4. If X is a complex vector space,
then there exists a base-real subspace X0 such that
X = X0 + iX0, i.e. a complex vector space can be
represented by a direct sum of two spaces which are
generated by some real vector space.

Proof. For any x0(6= θ) ∈ X , let M0 = Rx0 =
{tx0 : t ∈ R}. Then M0 is a vector subspace of X on
the restricted number field R, and M0 ∩ iM0 = {θ}.
Setting CM0 = {zm0 : z ∈ C,m0 ∈ M0}, we have
that CM0 is a complex vector subspace of X . For
any x1 ∈ X\CM0 we know that M1 = M0 + Rx1
is also a vector subspace on a restricted number field
R of X and M1 ∩ iM1 = {θ}. By induction we
obtain a sequence {Mn} of vector subspaces with
Mn ∩ iMn = {θ}. Assume that M is the family
of all vector subspaces on R, that M ′ = {M0 ∈ M :
M0 ∩ iM0 = {θ}} (clearly, M ′ is nonempty), and
that {Mα}α∈J is the family of totally ordered sub-
sets of M ′, where J is an indexing set. Consequently,
XM = ∪α∈JMα is a vector subspace on R and the
supremum of {Mα}α∈J . Further we have

XM ∩ iXM =
⋃

α∈J Mα ∩ i
⋃

α∈J Mα

=
⋃

α∈J Mα ∩ i
⋃

β∈J Mβ

=
⋃

α∈J

⋃

β∈J(Mα ∩ iMβ).

Since {Mα}α∈J is a family of totally ordered
subsets with Mα ∩ iMα = {θ} for any α ∈ J
and Mα ∩ iMβ = {θ} for any α, β ∈ J , we get
XM ∩ iXM = {θ}. Now Zorn’s lemma yields that

M ′ has the maximum element X0.

Next we shall show that X0 is the required
subspace. Firstly, CX0 = X , here CX0 is the
smallest complex subspace containing X0. In fact,
if CX0 6= X , then there exists an x ∈ X\CX0. It
follows that X ′

0 = X0 + Rx is a vector subspace on
R containing X0 with X ′

0 ∩ iX ′
0 = {θ}. This is in

contradiction with the maximality of X0. Obviously,
CX0 = X0 + iX0. Since X0 ∩ iX0 = {θ},
X = X0+ iX0. If u = x+ iy ∈ X (here x, y ∈ X0),
then ū = x − iy is the conjugate element of u, i.e.
X0 is a base real subspace of X .

This proof is finished.

Suppose that e ∈ S is the idempotent element. The-
orem 5.3.2 (Hille and Phillips, 1957) may be extended
to the Fréchet algebra S containing the Banach alge-
bra. Then using the result after extending we can get

exp (Log)z = z, exp(z + 2πie) = exp z,

where exp z =
∑∞

j=1 z
j/j!. If z and e commute, then

exp(z + 2πine) = exp z, for n = 0,±1,±2, ....

It follows that

Log[exp z] = z+2πine = z′+i(z′′+2πne), (2.2)

for any integer n and z′, z′′ + 2πne ∈ S0, where
S = S0 + iS0, S0 is a base-real Fréchet algebra.
From (2.2) we can define the argument of exp z be-
ing z′′ + 2πine. Because

exp z′z′′ = (exp z′1z
′′
1 , ..., exp z′jz

′′
j , ...),

Logz = (log |z1|, ..., log |zj |, ...)

+i(Argz1, ...,Argzj , ...).

It follows that the argument Argz of z may be defined
by

(Argz1, ...,Argzj , ...). (2.3)

3 THE V H
∞ SPACES

Let |f(z)| = (|f1(z1)|, . . . , |fj(zj)|, . . .) be the vec-
tor modulus of f and ‖f‖ = (‖f1‖, . . . , ‖fj‖,
. . .) the vector norm of f . For any a, b ∈ S, a ≤ (<
)b is aj ≤ (<)bj for each j. Let C

+
j = {z ∈ Cj :

<z > 0} and S+ =
∏∞

j=1 C
+
j . The set V Hp(S+)

consists of all holomorphic mappings f : S+ → S
satisfying
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sup
<z>0

{∫

I

|f(x+ iy)|pdy

}
1

p

(= ‖f‖p) <∞,

where I =
∏∞

j=1{(−∞,∞)}, z = x + iy ∈ S+,

and 0 < p < ∞. The set V H∞(S+) consists of all
holomorphic mappings f : S+ → S satisfying

sup
<z>0

{|f(x+ iy)|} (= ‖f‖∞) <∞.

Theorem 3.1. It f ∈ V Hp(S+) with 1 ≤ p, then f
is written as

f(z) =
1

π

∫

I

xf(it)[x2 + (y − t)2]−1dt, z ∈ S+

where f(it) ∈ V Lp(I).

In order to show Theorem 3.1, the following two
lemmas are required.

Lemma 3.1. If f ∈ V Hp(S+), then there exists a
constant element c such that

|f(z)| ≤ cx−
1

p , z = x+ iy ∈ S+.

Proof. Let L =
∏∞

j=1{(0, 2π)} and R=
∏∞

j=1

{(0, r)}. Let X =
∏∞

j=1{(xj − rj , xj + rj)} and
Y =

∏∞

j=1{(yj − rj , yj + rj)}. Because |f(z)|p is a
subharmonic mapping (Hoffman, 1962),

|f(z)|p ≤
1

2π

∫

L

|f(z + ρeiθ)|pdθ, 0 < ρ < x.

Product the two sides of the above formula by ρ and
integrate on R with respect to ρ. It follows that

r2

2
|f(z)|p ≤

1

2π

∫

R

∫

L

|f(z + ρ eiθ)|pρdθdρ

≤
1

2π

∫

X

∫

Y

|f(ξ + iη)|pdηdξ

≤
1

2π

∫

X

mdξ =
mr

π
.

Therefore |f(z)|p ≤ cp

r
where cp = 2m

π
. Lemma 3.1

is proved as r → x.

Lemma 3.2. If f ∈ V Hp(S+)(p ≥ 1) and h > 0,
then

f(z + h) =
1

π

∫

I

xf(it+ h)[x2 + (y − t)2]−1dt,

for z = x+ iy.

Proof. Take ΓR =
∏∞

j=1 ΓRj , where ΓRj ⊂ Cj

is a closed lune path consisting of the line xj =

hj(> 0) and the circular arc with the center at the
origin and radius R sufficiently large in the right-
half plane C

+
j . Let R cos θ0j = hj . Since exp ix =

(exp ix1, . . . , exp ixj , . . .), cos θ0 =
(cos θ01, . . . , θ0j , . . .). So R cos θ0 = h ∈ S. From
Cauchy’s integral formula we derive

f(z + h) =
1

2πi

∫

ΓR

f(ξ)[ξ − (z + h)]−1dξ,

where z+h is in the interior of ΓR. Because h−z lies
the exterior of ΓR, Cauchy’s integral theorem yields

1

2πi

∫

ΓR

f(ξ)[ξ − (−z + h)]−1dξ = 0.

It follows that

f(z + h)|

=
1

2πi

∫

ΓR

f(ξ){[ξ − (z + h)]−1

−[ξ − (−z + h)]−1}dξ

=
1

πi

∫

ΓR

xf(ξ)[(ξ − h− iy)2 − x2]−1dξ

=
1

π

∫

T

xf(it+ h)[x2 + (y − t)2]−1dt

+
1

π

∫

H

xReiθf(Reiθ)

{[Reiθ − h− iy]2 − x2}−1

= I1 + I2,

where T =
∏∞

j=1(−R sin θ0j , R sin θ0j), and H =
∏∞

j=1(−θ0j , θ0j). Obviously

lim
R→∞

I1 =
1

π

∫

I

xf(it+ h)[x2 + (y − t)2]−1dt.

Next we show limR→∞ I2 = 0.

Lemma 3.1 implies |f(Reiθ)| ≤ c(R cos θ)−
1

p . It
follows that

∣

∣xReiθ[(Reiθ − h− iy)2 − x2]−1
∣

∣

= xR|Reiθ − h− iy + x|−1

|Reiθ − h− iy − x|−1

≤ xR|R− h− y − x|−2

for R sufficiently large. Thus

|I2| ≤
1

π

∫

O

c(R cos θ)−
1

p xR|R− h− y − x|−2dθ,

where O =
∏

{(−π
2 ,

π
2 )}. Because the integral

∫

L
(cos θ)−

1

p dθ converges and
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lim
R→∞

xR1−
1

p (R− h− y − x)−1 = 0, lim
R→∞

I2 = 0

if p ≥ 1.
Combining the above, letting R → ∞ we obtain

required conclusion.

Proof of Theorem 3.1 The following two cases are
discussed.
α) p > 1

Since f ∈ V Hp(S+), there is an M > 0 such that
∫

I
|f(it + h)|pdt ≤ M, where h > 0 is any element

in S. It follows that f(it + h) is weak convergence
to f(it) ∈ V Lp(I). Lemma 3.2 yields f(z + h) =
1
π

∫

I
xf(it+h)[x2+(y− t)2]−1dt. Setting h→ 0 in

the above formula we get the result of Theorem 3.1.
β) p = 1

From Cauchy’s integral theorem we derive
∫

I
f(it+h)(it+z)−1dt = 0 for any 0 < h ∈ S. The

mapping f(it+ h)dt is weak* convergence to dµ(t),
where dµ(t) is a measure on I0 =

∏∞

j=1

{(−i∞, i∞)} satisfying
∫

I
|µ(t)| < ∞ if h → 0.

It follows that for any 0 < x ∈ S,
∫

I
(it + x −

iy)−1dµ(t) = 0. Letting y = 0 in the above for-
mula we get

∫

I
(it + x)−1dµ(t) = 0. Finding the

Fréchet derivatives of each order we obtain
∫

I
(it +

x)−ndµ(t) = 0 for n = 0, 1, . . . . Specially there are
∫

I
(it + I)−ndµ(t) = 0 for n = 0, 1, . . . as x = I,

where I is the unit element in S. Define a measure
dv(τ) = (it − I)−1dµ(t). The conformal mapping
w = (z − I)(z + I)−1 implies

∫

L

einτdv(τ)

=

∫

I

(it− I)n−1(it+ I)ndµ(t)

=

∫

I

[(it+ I)− 2I]n−1(it+ 1)−ndµ(t)

=
n
∑

k=1

[

ak

∫

I

(it+ I)−kdµ(t)

]

= 0.

From Riesz’s theorem (Garnett, 1980) and the
absolute continuity of v(τ) we derive that µ(t) is also
absolutely continuous and f(it) ∈ V L1(I) and that
dµ(t) = f(it)dt. Hence Lemma 3.2 yields

f(z) =
1

π

∫

I

xf(it)[x2 + (y − t)2]−1dt.

This proof is finished.

Theorem 3.2. Assume that F (z) ∈ V Hp(S+), and
that f(w) = F (z), then f(w) ∈ V Hp(Ds) where

w = (z − I)(z + I)−1, Ds = (Ds1, . . . , Dsj ,
. . .) and Dsj is a unit disk in Cj for each j.

Proof. The following two cases are discussed.

1) p ≥ 1
From Theorem 3.1 we obtain

F (z) =
1

π

∫

I

xF (it)[x2 + (y − t)2]−1dt, z ∈ S+,

where F (it) ∈ V Lp(I). Using F (it) = f(eit), we
can get

F (z)

=
1

2π
(1−r2)

∫

L

f(eiτ )[1+r2−2r cos(ϕ−τ)]−1dτ.

So

∫

L

|f(eiτ )|pdτ =

∫

I

2|F (it)|p(1 + t2)−1dt

≤ 2

∫

I

|F (it)|pdt <∞.

Hence f(w) ∈ V Hp(Ds).

2) 0 < p < 1.

Lemma 3.1 yields |F (z)| ≤ cx−
1

p . Particularly
|F (z)| and |F (z)|p are bounded on the half space
∏∞

j=1{<zj ≥ hj > 0}, thus |F (z + h)|p is a sub-
harmonic mapping on S+. It follows that

|F (z+h)|p ≤
1

π

∫

I

x|F (it+h)|p|x2+(y−t)2|−1dt.

Since
∫

I
|F (it + h)|pdt ≤ m for any h > 0, there is

a measure µ such that
∫

I
|dµ(t)| <∞ and

|F (z)|p ≤
1

π

∫

I

x|x2 + (y − t)2|−1dµ(t).

Let dν(τ) = −2(I + t2)−1dµ(t). Then

|f(reiϕ)|p

≤
1

2π

∫

L

(1− r2)|1 + r2 − 2r cos(ϕ− τ)|−1dν(τ).

Fubini’s theorem yields

∫

L

|f(reiϕ)|pdϕ ≤ 2

∫

I

|1 + t2|−1|dµ(t)| <∞,
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so f(w) ∈ V Hp(Ds).

Theorem 3.3. If F (z) ∈ V Hp(S+), then F (z)
= F[i](z)F[o](z), where

F[i](z) = eiγB(z) exp

{

1

π

∫

I

$(t, z)dσ(t)

}

eiαz

is called the inner mapping of F , $(t, z) =
(itz − I)[(it − z)(I + t2)]−1, γ ∈ I, B(z) is the
Blaschke product of F, σ(t) is a singular measure,

∫

I

(I + t2)−1dσ(t) > −∞, α(∈ S) > 0

and the mapping

F[o](z) = exp

{

1

π

∫

I

$(t, z) log |F (it)|dt

}

is called the outer mapping of F .

Proof. By using the transform w = (z − I)(z + I)−1

and Theorem 3.2 we obtain f(w)∈VHp(Ds),
where f(w) = F (z). Theorem 2.2.8 (Hu and Yang,
1992) implies f(w) = f[i]f[o], where

f[i](w) = eiγBf (w) exp

(

−
1

2π

∫

L

ϑ(τ, w)dν(τ)

)

,

Bf (w) =
∏

n

(

|wn]|(wn] − w)[wn](I − wn]w)]−1
)

,

f[o](w) = exp

(

1

2π

∫

L

ϑ(τ, w) log |f(eiτ )|dτ

)

,

ϑ(τ, w) = (eiτ + w)(eiτ − w)−1, γ ∈ I, ν ≥ 0 is a
singular measure on L. It follows that

f[i](w)=eiγBf (w)exp

(

−
1

π

∫

I

$(t, z)dσ(t)

)

e−αz,

f[o](w) = exp

(

1

π

∫

I

$(t, z) log |F (it)|dt

)

,

where α = 1
π
[ν(0) + ν(2π)], and dν(τ) = −2(I +

t2)−1dσ(t). Let B(z) = Bf (w), F[i](z) = fi](w),

and F[o](z) = f[o](w) via w = (z − I)(z + I)−1.
Then F (z) = F[i](z)F[o](z). By using Theorem 2.2.8
(Hu and Yang, 1992) we can check that F[i](z) is the
inner mapping and F[o](z) is the outer mapping. This
ends the proof.

Theorem 3.4. A mapping f ∈ V H∞(l∞) is outer if
and only if fV H2 is dense in V H2

Proof. Let £ is a shift operator on V H2, i.e. £(f) =
zf(z). Assume that Υ is a closure of fV H2 in V H2.
Obviously, Υ is an invariant subspace with respect to
£. By using Beurling’s Theoremin (Garnett, 1980),
we know that there is an inter mapping g such that
Υ = gV H2. Since f ∈ Υ, the mapping f can be
represented as f = gh, where h ∈ V H2.

Necessity. If f is an inner mapping, then g ≡ const
by f = gh. It follows that Υ = gV H2, namely,
fV H2 is dense in V H2.

Sufficiency. Suppose that f is not outer, and that
f = f[i]f[o], then f[i] 6≡ const. We can check that
f[i]V H2 is an invariant subspace with respect to £

and f[i]V H2 ⊃ fV H2. Thus fV H2 is not dense in
V H2. This is in contradiction with the hypothesis.
This contradiction shows the sufficiency.

Therefore the result of this theorem holds.

4 THE V H
∞ CONTROL

In this section, we replace S by the complex bounded
sequence space l∞. The subset of V H∞ consisting
of all elements with every component being real-
rational function, is denoted by V RH∞. We call f
to be strong proper if f ∈ V RH∞ and ‖f‖

∞
< ∞,

strictly strong proper if f(∞) = 0. We call f to be
stable if f ∈ V RH∞ and f has no poles in the do-
main D+(=

∏∞

j=1D+
j ), where D+

j = {<(sj) ≥ 0}.
From the above definitions and the correspond-

ing conclusion (Hu and Ma, 2002) we derive
f ∈ V RH∞ if and only if f is strong proper and
stable.

The space (l∞)n×m consists of all n × m com-
plex matrices with each element being in l∞. If
f(z) ∈ (l∞)n×m, then f can be written as

f =









f11 · · · f1n
f21 · · · f2n

...
. . .

...
fm1 · · · fmn









= (f1, . . . , fj , . . .),

where

fj =









f11j . . . f1nj
f21j . . . f2nj

...
. . .

...
fm1j . . . fmnj









.
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Let %j be the maximal singular value of fj . Then
( %1 , . . . , %j , . . . ) is called the maximal singular
value vector of f . Let V L∞ be a space consisting
of all mapping matrices f(iω) with

sup{σ̄[f(iω)] : ω ∈ (−∞,∞)} <∞.

Here σ̄[f(iω)] is its maximal singular value
vector for any fixed ω. The vector norm of f ∈ V L∞

is defined by

‖f‖∞ = sup{σ̄[f(iω)] : ω ∈ (−∞,∞)}.

The spaceV RL∞consists of all real-rational mapping
matrices in V L∞.

The space V L2 consists of all mapping matrices
{x(iω)} which are in (l∞)n and satisfy

∫

I

x∗(iω)x(iω)dω <∞,

where x∗ is the complex-conjugate transpose of x.
The space V H∞ consists of all holomorphic mapping
matrices {F (s)} satisfying

sup{σ̄[F (s)] : <(s) > 0} <∞

and this sup is denoted by ‖F‖∞ being the vector
norm of F ∈ V H∞.

Three transfer matrices

T [l] = (T
[l]
1 , . . . , T

[l]
j , . . .), l = 1, 2, 3

are controllers. Similar to the classical method in [2],
we define the transfer mapping matrix

G(s) :=

[

T [1](s) T [2](s)
T [3](s) 0

]

, K(s) = −Q(s)

where T [l] ∈ V H∞ for l = 1, 2, 3 are given. Let

T [i] = [ Ti1 · · · Tij · · · ]

for i = 1, 2, 3. Then G can be written as

[[

T11 T21
T31 0

]

· · ·

[

T1j T2j
T3j 0

]

· · ·

]

.

For simplicity we only discuss under

T [l] ∈ V RH∞(l∞), l = 1, 2, 3.

In V H∞ control theory, the model-matching prob-
lem is to find an element Q ∈ V RH∞ or a matrix
Q ∈ V RH∞ to minimize

∥

∥

∥
T [1] − T [2]QT [3]

∥

∥

∥

∞

,

Q is the controller to be designed. Let

α := inf
{∥

∥

∥
T [1] − T [2]QT [3]

∥

∥

∥

∞

}

be infimal model-matching error. The linear time
invariant system ß in V RH∞ is defined by

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t).

Completely controllable (c.c.) and completely
observable (c.o.) concepts and symbols (A,B) and
(A,C) are similar to Definition 2.3 (Hu and Ma,
2002). The concept of the minimal realization is
similar to Definition 2.4 (Hu and Ma, 2002). A
matrix A ∈ V RH∞ is said to be antistable if all the
generalized eigenvalue vectors consisting of its all
eigenvalues, of A, are in

∏∞

j=1{<(sj) > 0}.

From the H∞-control theory we derive the follow-
ing result.

Theorem 4.1. (i) A realization [A,B,C, 0] of a given
transfer matrix G(s) ∈ V RH∞ is minimal if (A,B)
is completely controllable and (A,C) is completely
observable respectively.

(ii) If A is antistable, then the Lyapunov equations

ALc + LcA
T = BBT

ATLo + LoA = CTC

have the unique solutions respectively, where

Lc :=

∫

Ω

e−AtB BT e−AT tdt,

Lo :=

∫

Ω

e−AT tCTCe−Atdt,

where Ω =
∏∞

j=1 Ωj ,Ωj = [0,∞).

Theorem 3.3 and Theorem 2.1 yield that a map-
ping T in V RH∞ is inner if T (−s)T (s) = I, and
outer if it has no zeros in

∏∞

j=1{<(sj) > 0}, that
T (−s)T (s) = I if and only if each component

Tj(−sj)Tj(sj) = 1 for any j,

that every mapping T in V RH∞ has a factoriza-
tion T = T[i]T[o] with T[i] inner, T[o] outer, and
∥

∥T[i](iω)
∥

∥

∞
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= I (the unit element), and that if T[o](iω) 6= 0 for
all ω ∈ Ω, then T−1

[o] exists and T−1
[o] ∈ V RH∞.

Returning to the model-matching problem,
without loss generality we may assume T [3] = I
and bring in an inner-outer factorization of
T [2] : T [2] = T

[2]
[i] T

[2]
[o] . It follows that for Q in

V RH∞ we have

‖T [1] − T [2]Q‖∞ = ‖T
[2]
[i]

−1
T [1] − T

[2]
[o]Q‖∞

= ‖R−X‖∞,

where R = T
[2]
[i]

−1
T [1], X = T

[2]
[o]Q.

Let λ2 be a generalized largest eigenvalue vector
of LcLo and w a corresponding vector matrix respec-
tively. Define

f(s)=[A,w,C, 0], g(s)=[−AT , λ−1Low,BT , 0]

and

X(s) = R(s)− λf(s)[g(s)]−1.

Let F (s) ∈ V L∞ and g(s) ∈ V L2. Then the operator

ΛF (s) : ΛF (s)g(s) = F (s)g(s)

is called the Laurent operator. For F (s) in V L∞, the
Hankel operator with symbol F (s), denoted by ΓF (s),
maps V H2 to V H2⊥ and is defined as

ΓF (s) := Π1ΛF (s)|V H2,

where Π1 is the projection from V L2 onto V H2⊥ .
Let {sj : <(sj) = 0,=(sj) ≥ 0} = Θj and

∏∞

j=1Θj = Θ.

By using the preceding method we may obtain the
following conclusions.

Theorem 4.2.
(a) If the ranks of T [2] and T [3] are constant on Θ,

then the optimal Q exists.

(b) There exists a closest V RH∞-mapping X(s)
to a given V RL∞-mapping R(s), and
‖R−X‖∞ = ‖ΓR‖, where

‖ΓR‖ = (‖Γ1R1
‖, . . . , ‖ΓjRj

‖, . . .).

(c)The infimal model-matching error α equals
‖ΓR‖ and the unique optimal X equals

R(s)− λf(s)[g(s)]−1.

The optimal controller

Q = (Q1, . . . , Qj , . . .) =
(

T
[2]
[o]

)−1

X ∈ V RH∞

is found via this theorem. Therefore the V H∞-
control theory is solved.

5 CONCLUSIONS

1) Theorem 4.2 gives the optimal solution Q and
the infimal model-matching error α of the V H∞

control theory on the Banach algebra being isometric
isomorphism l∞. Section 2, Section 3 and Theorem
4.1 are the foundation of Theorem 4.2.

2) The concepts and the property of meromorphic
mappings in Definition 2.1 and Theorem 2.2 are
breakthroughs on infinite dimensional complex anal-
ysis. The argument on infinite dimensional spaces
are defined in formula (2.3) being very important
concept in the geometry.

3) All control theory on finite dimensional spaces
can be extended that on infinite dimensional spaces to
infinite dimensional spaces by using methods in this
paper.
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