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Abstract: The investigated noise removal algorithms are HRBA, HSBA, HBA, AMVR, PNRA, MMSE, MNR, 
MNR2 and NFPCA. The multiresolution support provides a suitable framework for noise filtering and for 
restoration purposes by noise suppression. The techniques used in the paper are mainly based on the 
statistically significant wavelet coefficients specifying the support. The performed tests reveal that the use 
of the multiresolution support proves powerful and offers a versatile way to handle noise of different classes 
of distributions.   

1   INTRODUCTION 

The restoration techniques are usually oriented 
toward modeling the type of degradation in order to 
infer the inverse process for recovering the original 
image. Some of the techniques (HRBA, HSBA, 
HBA, PNRA) presented in the sequel aim to 
improve the quality of the filtered images using a 
certain amount of information globally extracted 
from the whole set of samples consisting of filtered 
and non-filtered ones. The AMVR algorithm allows 
the removal of the normal/uniform noise whatever 
the mean of the noise is.  

The multiresolution support provides a suitable 
framework for noise filtering and for restoration by 
suppressing the noise. The MNR technique is 
essentially based on the statistical significance of the 

wavelet coefficients specifying the support.  
An important feature of neural networks is the 

ability they have to learn from their environment, 
and, through learning to improve performance in 
some sense. In the following we restrict the 
development to the problem of feature extracting 
unsupervised neural networks derived on the base of 
the biologically motivated Hebbian self-organizing 
principle which is conjectured to govern the natural 
neural assemblies and the classical principal 
component analysis (PCA) method used by 
statisticians for almost a century for multivariate 
data analysis and feature extraction. 
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2   ALGORITHMS FOR 
IMPROVING THE QUALITY OF 
FILTERED IMAGES 

The research aimed the comparison of the 
performances of our restoration algorithms HRBA, 
HSBA, HBA, PNRA (Cocianu, 2002) and NFPCA 
against well known algorithms that are currently 
used for solving this type of problem. 
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Step 6. Compute ( )iΨ  the matrix having the 
columns the unit eigenvectors of . The most 
informative features responsable for the class 

separability are given by 
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where σ  is a noise-preventing constant, 10 <σ< . 

The HBA image restoration algorithm is based on 
the Bhattacharyya distance, (State, 2001) 
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whereσ  is a noise-preventing constant, 0<σ <1.  
The PNRA is based on the innovations algorithm 

of the best linear predictors . Let X0 be a R×C image, 
R ≥ 1, C ≥ 1, whose pixels are colored on a N level 
gray scale. We assume that the input is represented 
by a sample {Xl

(1),l=1,...,n} on X(1)=X0+η (State, 
2000). Using a binomial mask B and the contrast 
enhancement operator P resulted by Lagrange 
interpolation (Cocianu, 1997), we get the variants 
X(2)=P(B(X(1))), X(3)=P(X(2)). For each r=1,...,R and 
c=1,...,C we define (State, 2000),  
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Aiming the removal of the residual noise, we apply 
to each sample the transform, 
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algorithm is (Cocianu, 2002), 
Input The  image Y representing a 

normal/uniform disturbed version of the initial 
image X, , 

CL ×

( ) ( ) 0
,,, clclXclY η+= CcLl ≤≤≤≤ 1,1 , 

where  is a sample of the random variable 0
,clη cl ,η  

distributed either  or . ( )2
,, , clclN σµ ( )2

,, , clclU σµ
Step 1. Generate the sample of images 

, where { }nXXX ,...,, 21

( ) ( ) i
cli clYclX ,,, η−= ,  CcLl ≤≤≤≤ 1,1

and  is a sample of the random variable i
cl ,η cl ,η . 

Step 2. Compute  

    ( ) ( )∑
=

=
n

i
i clX

n
clX

1

,1, , . CcLl ≤≤≤≤ 1,1

Step 3. Compute the estimation X̂ of X using the 
adaptive filter MMSE, ( )XMMSEX =ˆ . 

The multiresolution support provides a suitable 
framework for noise filtering and for restoration 
with noise suppression. The procedure used is to 
determine statistically significant wavelet 
coefficients and from this to specify the 
multiresolution support, therefore a statistical image 
model is used as an integral part of the image 
processing. The support is used subsequently to 
hand-craft the filtering processing. The MNR 
algorithm is (Stark, 1995), 

Input: The image 0 , the number of the 
resolution levels p and the heuristic thresold k. 

X
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In the following, we present a generalization of 
the MNR algorithm based on the multiresolution 
support set for noise removal in case of arbitrary 
mean (Cocianu, 2003). Let g be the original “clean” 
image, η~ ( )2,σmN  and the analyzed image 

η+= gf . The sampled variants of f, g and η  
obtained using the two-dimensional filter ϕ  are 
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following algorithm. 
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superimposing noise sampled from  on the 
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Step 4. Compute a variant of the original image 
 using the multiresolution filtering based on the 

statistically significant wavelet coefficients. 
0I

An alternative approach in solving image 
restoration task can be performed by PCA neural 
network. The idea is to use features extracted from 
the noise in order to compensate the lost information 
and improve the quality of images. The NFPCA 
algorithm is presented in the following. Let 0I  be a 
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RxC matrix ( CnnCC <≤= 2,1 ) representing the 
initial image of L gray levels and I the distorted 
variant resulted from 0I  by superimposing noise 

, , , 1( )Σ,0N Ri ,...,1=∀ ( ) njjnk ,...,1−= ,...,1 Cj = , 
jiji ,, . The restoration process of the 

image I is described as follows. 
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Step 3. An approximation 0~ II ≅  of the initial 
image 0I  is produced by applying the inverse 
transform of  to I”.  TT

Φ

3 COMPARATIVE ANALYSIS ON 
THE PERFORMANCE OF THE 
NOISE REMOVAL 
ALGORITHMS 

A series of experiments were performed, different 
256 gray level images being preprocessed aiming the 
contrast enhancement, increasing enlightens and 
noise removing by filtering them.  Our experiments 
use the averaging and respectively binomial filtering 
techniques. The parameters involved in the 
mentioned algorithms were tuned taking into 
account the following factors: the distortion degree 
of the inputs, the particular smoothing filter, the 
volume of the resulting accepted data (Cocianu, 
2002).  

A synthesis of the comparative analysis on the 
quality and efficiency corresponding to the 
restoration algorithms presented in the paper is 
supplied in Table 1, Table 2, Table 3 and Table 4. 

 
Table 1 

Restoration 
algorithm 

Mean 
error/pixel 
N(30,150) 

Mean 
error/pixel 
N(50,200) 

Mean 9.422317 12.346784 
HRBA 9.333114 11.747860 
HSBA 9.022712 11.500245 
HBA 9.370968 11.484837 

 

 
Table 2 

Restoration 
algorithm 

Mean 
error/pixel 

N(50,200) 

Mean 
error/pixel 
N(90,250) 

Mean 12.346784 102.528893 
The innovation 
algorithm 

11.647346 94.912895 

 
Table 3 

Restoration 
algorithm 

Type of 
noise  

Mean 
error/pixel 

MMSE 50.58 
AMVR 

U(40,70) 
8,07 

MMSE 46.58 
AMVR 9.39 
MNR2 12.23 
NFPCA 

N(50,100) 

10.67 
 

Table 4 
Restoration 

algorithm 
Type of 
noise  

Mean 
error/pixel 

MNR ( )1h  11.6 

MNR ( )2h  

N(0,100) 

9.53 

MNR ( )1h  14.16 

MNR ( )2h  

N(0,200) 

11.74 
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