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Abstract: Due to the measurement problems encountered in mineral processes, observers are appropriate ingredients 
of advanced model based control algorithm. The measurement problem can be solved by designing 
nonlinear observer. This paper discusses the way in which a state observer may be designed to control a 
special class of nonlinear systems. Focus is put on the pertinent applicability of the scope of these 
techniques, to control the dynamics of mills in mineral processes. The approach uses a small number of 
parameters to control the mill power draw affected by sudden changes within the system. It provides with 
principles and ability of the system to adapt to changing circumstances due to intermittent disturbances (like 
for instance changes in hardness of the raw material). Performance and stability analysis was developed. 
Using a generalised similarity transformation for the error dynamics, it is shown that under boundedness 
condition the proposed observer guarantees the global exponential convergence of the estimation error. This 
way, the nominal performance of the process is improved but the robust stability is not guaranteed to fully 
avoid the mill plugging. 

1 INTRODUCTION 

Grinding plants never operate at steady state but 
rather at perpetual transient states due to a variety of 
disturbances. The mathematical model was 
addressed in the way that combines disturbance 
parameters with material physical properties. It 
satisfies sufficient conditions which lead to 
determine the system at any instant in time. 
In mineral processes, the application of modern 
model based control algorithms is hampered by the 
lack of accurate and cheap on-line sensors. The 
design of state observers, which reconstruct states 
out of a limited set of measurements, is a possible 
approach for dealing with the measurement problem. 
Due to the (time varying) nonlinear behaviour of 
grinding systems, the measurement problem can 
only be solved by designing nonlinear observers. 
In general, observers design methodologies are 
based on (i) exact linearisation, (ii) local 
linearisation in original coordinates, (iii) local 
linearisation in observer coordinates, and (iv) high 
gain methods are considered (Misawa, 1989). Due to 
the process uncertainty, inherent in mineral 
processing, applicability and robustness analysis of 
the nonlinear observers have been performed. The 

stability properties analysed are with respect to zero, 
which is equilibrium for the proposed system. In this 
sense, our main restriction on the nominal system is 
that the subsystem be globally stable with variable 
viewed as a virtual control input. As a case study, 
wet grinding in continuous and fed-batch operation 
mode considered is described in Section 2.  In 
Section 3 observer design is discussed in general 
while simulation results are presented in Section 4. 
The observer performance analysis is discussed in 
general in Section 5.  

2 SYSTEM DESCRIPTION 

A wet grinding shown in Fig.1 or dry grinding 
(cement processing) has been developed with the 
objective of studying the effects of many variables 
on particle size reduction in continuous grinding 
processes. Detailed phenomenological model that 
describes the charge behaviour has been developed 
and validated against real data (Abou, 1998).  
Indeed, mineral processes present non-linear/chaotic 
dynamic behaviour. Considerable efforts have been 
developed in controlling such system, (Abou, 1997), 
(Weller, 1980). In (Abou, 1998), a comprehensive 
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model integrates the physical mechanisms governing 
mineral processes and a fundamental understanding 
of the charge behaviour was expressed. It was 
pointed out that grinding media collisions and 
impacts on lifters induced non-linearity in materials 
breakage process. Due to inappropriate control of 
the motor charge, important engineering conclusions 
derived from the charge motion studies (Abou, 
1997), recommend a focused study of the influence 
of the wear of both the grinding media and the lifters 
on the material size reduction quality. Further 
Investigation reveals that, an important factor of the 
poor quality of fine grinding is due to lacks of an 
appropriate control of the power draw of the mill. 
This causes increase of energy consumption, and 
production cost, (Austin, 1990).  
To address practical results which could be 
transferred to industrial level, the key is the 
development of a practically an accurate grinding 
circuit control. That is to maximise the 
manoeuvrability at the low and the high speed 
rotating stability of ball mills when the material 
hardness and size or the slurry concentration change. 
 
 
 
 
 
 
 
 

Figure.1: Schema of ball mill powering system 

3 GRINDING PROCESS 
MODELLING  

Grinding systems are power-intensive, and even the 
simplest ones; exhibit complex bifurcation 
behaviour in going from periodic motion to chaos. 
Such a complex behaviour has been noticed in the 
analyses of the dynamics of the charge of ball mill 
(Abou, 1998). It appears that, simple but nonlinear 
models are necessary to describe such a system. The 
main goal is to minimise the consumption energy, 
avoid strong impact which causes wear of lifters, 
and rotate the charge with optimal speed for required 
fine particle quality. Using the cross section of the 
ball mill shown in Fig.1, the mill action could be 
shown graphically by considering the change in 
position of the centre of gravity of ball and particle 
charge with increasing speed of rotation, Fig.2.  
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Figure 2: Ball movement with various rotation speed 

Notice that the motor load is influenced by the 
filling percentage, the speed, the mill geometry and 
other relevant material properties such as stiffness 
and the coefficient of friction, etc… As shown in 
Fig.2, theoretical position of the charge at different 
rotation speed was first derived by (Davis, 1919) 
based on force balance.  
Most research (Austin, 1990), have developed first 
order model to describe the system. However, their 
use in practical solutions context has a lack of their 
dependence on the physical parameters of the 
system. Since the problem is to develop the grinding 
process model for control purpose, the main 
objective in an advanced mathematical model 
formulation could base on the following basic 
control flowchart structure, Fig.3 to develop the 
process behaviour. 

Motor 

Ball Mill

Definition of control
objectives

Process advanced
mathematical modelling

( , )x f x u=&

Controller
 

Figure 3: Control system design procedure 

Notice that, besides in batch mode, grinding circuit 
can operate in continuous or fed-batch mode. Based 
on the interpretation of the Fig.3, we are interested 
in the constitutive characteristics of the charge 
motion defined by the function ( , )f x u , focusing on 
the specific parameters that better describe 
continuous grinding phenomena relationship. From a 
macroscopic standpoint, the internal breakage model 
can be formulated taking in account the specifics 
phenomena of particle transport and size reductions: 
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where,   [kg], is particle mass of size i  im
The left side term of equation (Abou, 1998) 
expresses the rate of mineral production, while the 
term at the right side indicates fine particle transport 
phenomena. In such a process with distributed 
parameters, function Ψn(.) that characterises the 
particle size reduction, depends on many variables 
which are absolutely linked to system performance 
reliability. Therefore, without lacking for the 
physical sense for the process, we can write: 

( ) ( ). ,n n x uΨ = Ψ                          (2) 
Thus, we note the variation of the volume V of the 
charge is important to the breakage mechanism as 
much as it is to the transport phenomena, but from a 
volumetric point of view both phenomena could be 
treated in a different way. Therefore, the fraction of 
the total mass broken within a tiny volume of the 
charge is assumed to be ( )tσ : 

( ) c
V

t a dσ ρ= ∫∫∫ V             (3) 

where cρ is the charge bulk density,  is defined as 
a mass volume of material of classes i, so that the 
flow rate of particle is:  

a

( ) ( )c
c

V V

ad ddV a
dt t dt

∂ ρσ ρ
∂

= +∫∫∫ ∫∫∫
dV                   (4) 

In worse case, where we associate to the breakage 
process, the flux due to the absolute motion of the 
particle, we could define the flux associate to the 
fluid.  However, as the mass could not be transferred 
by conduction phenomena, the mass flux therefore, 
vanishes, so that we could write:  

i
F V

d
pJ dF dV

dt
σ ϑσ= − ⋅ +∫∫ ∫∫∫

r r
                       (5) 

where, iJ
r

 :longitudinal diffusion flux of the mass in 
class i. ;ϑ :piecewise parameter;σ p  : local fine 
particle.  
Based on equation (5) for the observer design, we 
assume that the mixing mechanism of powders in 
ball mills can be well described by a diffusion model 
and many factors such as the screen plate gape, balls 
quantity and energy consumed. We deduced that, the 
process could be defined as a multi-input multi-
output nonlinear system of the form: 

( , ( ))
( )

x F x u t
y g x
=
=

&
 (0) ox x=           (6) 

where is the state, x∈Ω ru R∈ is the control input: 

my R∈ is the output; (0)x  is the initial state. 
It is assumed that, ∀ t the state trajectory ( )x t is 
defined. In addition, the function (.)F  is 
continuously differentiable nonlinear function which 
represents the dynamics of the process and the 
disturbances. 
We consider four state variables: 

- the material grinding rate,  1( )x t
- the charge grindability,  2 ( )x t
- the material fineness ,  3( )x t
- the raw material hardness,  4 ( )x t

The output is set as follows:  
1 0 0 0

( ) ( )
0 0 1 0

y t x t
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

            (7) 

Interactions of these parameters are not easily 
identified.  
Assumption 1. As the proposed function (.)F  in (6) 
is assumed to be C1, there exists a C1 function 

( )xζ such that 
( , ( ))x F x xζ=&                       (8a) 

Is globally asymptotically stable. 
As result the system (6) could be designed in 
parameterised nonlinear mapping form as follows:  

( , , ) ( , , )x f x y u h x y u= +&              (8b) 

4 NONLINEAR OBSERVER 
DESIGN 

For a linear dynamical system in equation (9), a 
well-known Luenburger basic linear observer theory 
is given as follows: 

( ) ( ) ( )
( ) ( )

x t Ax t Bu t
y t Cx t

= +
=

&
  ( )o ox t x=                         (9) 

where dim ; dim ; ; dimx n y m with n m u r= = > =  
ˆ ˆ ˆ( ) ( ) ( ) ( ( ) ( ))x t Ax t Bu t K y t Cx t= + + −&            (10) 

The error dynamic equation is:   ( ) ( )e t Ae t= %&

As results, if the following conditions are satisfied: 
Conditions 

1. matrix C has  rank m n<

2. the pair { },C A is completely observable 
3. a x  transformation matrix T exists 

so that 
( )n m− n

KC TA AT= − %  
4. eigenvalues of the state matrix A% have 

negative real parts. 
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such that ( is stable, then the state error 
converges to zero. In addition we have: 

)A KC−
ˆe x x= −

{ } {Re ( ) Re ( )j i }A Aα ϕ<%           (11) 
In nonlinear system as described in (6), stability 
would not suffice as for Luenberger observers to 
guaranty its applicability. Complete controllability is 
required.  
Even though the use of the nonlinear functions can 
make the observer more efficient, treating the 
system in the form as in (6) is a challenge.  The 
Jacobian matrices of and in (6) with 
respect to x taken at α is used to design a 
matrix

( , )F x t ( , )g x t

( , )tαΓ which is a full rank, ( ) and 
satisfies assumptions below. The system described 
in (1)-(5) is highly nonlinear, clearly, it is difficult to 
verify in practice assumptions that , 

 and their respective time derivatives 
are bounded. Therefore, there is a real incentive for 
finding possible ways to lessen the complexity of the 
computation of .  

nRα ∈

( , ) /F x t x∂ ∂
∂( , ) /g x t x∂

1 ˆ( , )x t−Γ
Therefore, by eliminating some redundant terms, we 
are seeking an improvement of the proposed 
observer design for a special class of the system 
described in (6) using (8a) and (8b), for which 
assumptions 1 hold. Proceeding by analogy to the 
classical observer design approach in linear case for 
SISO, it is possible to extend the high gain observer 
design to MIMO cases, fig.4. 
Keeping to the fact that the model described by 
equations (5) and (6) are exactly the same as another 
and have theoretical importance, the system could be 
treated as a special class of nonlinear system when 
unknown inputs are considered. In this sense, to 
avoid our investigations becoming extremely 
restricted circumstances where deficiencies become 
apparent, we introduced the following representation 
class to fairly well match the mill behaviour. 

( , , )x Ax h x y u
y Cx
= +
=

&
                      (12) 

Equation (12) is valid for each state of the system. 
The sufficient and necessary conditions that 
characterise the function may be found in 
(Misawa, 1989). Therefore the following conditions 
are assumed. 

( , , )h x y u

Assumption 2: The observer state converges 
asymptotically to the state of the system, so that the 
state error is in the neighbourhood of zero. 
Therefore, the unmodeled dynamics subsystems 
have relative degree zero.  

Assumption 3: The partial derivatives of  
with respect to

( , , )h x y u
x and their respective time 

derivatives are bounded for all x and , so that: u

( , , )
hix y uij x j

∂
Ν =

∂
          (13) 

 

Process

Observer

u
y

e
-

+

ŷ  
Figure 4: Nonlinear observer structure 

We assumed ox is an equilibrium point 
corresponding to zero input and output, 
i.e., ( ) 0; ( ) 0o of x h x= =  Functions (.) (.)f and h are 
smooth.  
We denote by iθδ a diagonal matrix and A the 
constant matrix in Brunowsky form: 

2

1 1 1( , ,........, )i k
i i i

diagθδ θ θ θ
=           (14) 

0 1 ... 0
0 0 1 0
0 . . ...
0 0 0 ....

Ai

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

                   (15) 

The design of parameters iθδ must be large enough 
to compensate the system nonlinearity. Thus we 
shall assume: 
Assumptions 4: 

a. Matrix ( , , )x y uiΓ is full rank and 
is defined as follow : 

( , , )
( , , ) .....

1( , , )

Ci
C x y ui i

x y ui

nC x yi i u

⎡ ⎤
⎢ ⎥Ψ⎢ ⎥Γ = ⎢ ⎥
⎢ ⎥

−⎢ ⎥Ψ⎣ ⎦

        (16) 

where ( , , ) ( , , )x y u A x y ui i ijΨ = + Ν  
b. There exists a positive 

constant γ which is independent ofθ and 
satisfies condition 4. such that: 

{ }1sup ( , , )x y ui i iδ δ γθ θ
−Γ ≤&         (17) 
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c. (18) 1

1

0 . 0

0 0 0
( , , )

. . . .
0 0 0

n

nx y u

ϕ

ϕ

ϕ

−

⎡ ⎤
⎢ ⎥
⎢ ⎥

Λ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

A high gain observer design for the class of 
nonlinear systems in equation (12) can be stated as 
follows: 

1ˆ ˆ ˆ( ) ( ) ( , , ) ( )i i i ˆix t A x t h x y u K y C xθδ
−= + + −&        (19) 

We define the estimation error as: 
ˆ( ) ( ) ( )e t x t x t= −             (20) 

One major problem in updating the gain of observer 
in equation (19) lies in the computation of the 
symbolic inverse of the matrix ( , , )x y uiΓ . In many 
cases, this may become very complicated depending 
on the nonlinearities involved in the system. More 
precisely, at times, the matrix ˆ( , , )x y uiΓ may 
contain excessive number of terms and 
consequently, the real time implementation of the 
observer may become tedious (Iwasaki, 1999). This 
in turn will bring considerable simplification to the 
expression of the observer’s gain. 
To this end, ( , , )x y uiΓ is consider lower triangular 
and non singular for all x and . u

[ ]1 2, , ....., T
nx x x x=                   (21) 

Based on equation (5) to express the system 
described in equation (12), the improvement of the 
observer in equation (19) is related to the 
simplification of the gain of the observer by 
elimination of the redundant terms.  
For the grinding system, it is known that the motor 
load depends on the load within the mill that is 
tightly related to the input feed (raw material 
physical properties, tailings flow rates, energy...) and 
the output (flow rate, particle distribution ...). The 
evolution of the charge within the mill, (the hold-up) 
reproduces some unstable behaviour and is 
formulated as follows: 

1 1 1 1

2 2 2 1 2

1 2

( , )
( , , )

....................
( , ,..., , )n n n n

x A x h x u
x A x h x x u

x

x A x h x x x u

= +⎧
⎪ = +⎪= ⎨
⎪
⎪ = +⎩

&

&
&

&

         (22) 

1 1

2 2

.......

n n

y C x
y C x

y

y C x

=⎧
⎪ =⎪= ⎨
⎪
⎪ =⎩

                       (23) 

Based on equations (8), the function is as 
follows: 

( , , )h x y u

1 1 1
2

2 1 2 1 2 2

3 1 2 3 2 3

4 1 2 3 4 3 4

( , )
( , , )
( , , , ) exp( )
( , , , , )

h x u x u
h x x u x x x u
h x x x u x x u
h x x x x u x x u

ε

ε

=⎧
⎪ = +⎪
⎨ =⎪
⎪ = +⎩

        (24) 

Based on equation (15) the matrix ( , , )x y uiΛ  is 
chosen such as ( , , ) ( , , )x y u L x y u Ci iΛ = i   
Similar to ( , , )x y uiΓ we choose the 
matrix  ( , , )Q x y ui
as follows: 

( , , )
( , , ) ....

1( , , )

Ci
C A x y ui i

Q x y ui

nC A x y ui i

⎛ ⎞
⎜ ⎟
⎜= ⎜
⎜ ⎟

−⎜ ⎟
⎝ ⎠

%

%

⎟
⎟          (25) 

where  ( , , ) ( , , )A x y u A x y ui i i= + Λ%  
Further the similarity matrix transformation for the 
error dynamics is: 

 1( , , ) ( , , ) ( , , )M x y u Q x y u x y ui i i
−= Λ         (26) 

Based on the following theorem, [4.] equation (26) 
is valid. 
Theorem: 
Assume that system (19) satisfies assumptions a, b, 
c. 
There exist 0oθ > such that oθ θ∀ ≥ we have, for 

all ˆ(0) nx R∈ ;  ˆ(0) (0)x x λ− ≤  where λ is positive 
[4.]. Therefore equation (19) becomes as follows: 

1 1ˆ ˆ ˆ( ) ( ) ( , , ) ( )i i i i ˆix t A x t h x y u M K y C xθδ
− −= + + −&    (27) 

Then the error dynamics is: 

1 1

ˆ( ) ( , , ) ( , , )

ˆ( , , ) ( , , )
i

i i

e t A e h x y u h x y u

i iM x y u L x y u K C eθδ
− −

= + −

⎡ ⎤− +⎣ ⎦

&
    (28) 

Note that the gain matrix Ki is chosen such that 
matrices A K Ci i i− is Hurwitz, i.e. (all the 
eigenvalues of have negative real parts).  

5 SIMULATION RESULTS 

From the above equations the material grinding rate 
within the mill, ; the charge grindability (i.e., 

total of material grinded per unity of energy), ; 

the material fineness ,  and the raw material 

hardness,  are presented as below. 

1( )x t

2 ( )x t

3( )x t

4 ( )x t
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By an easy manipulation of non linear equations we 
could choose conveniently the steady-state values. 
Others values are imposed from the model 
(Nijmeijer, 1990). Practical problem observed on 
industrial milling circuit is that, large changes of the 
material feed hardness causes instability in the 
system controlling. The values of the various 
coefficients in the model have been tuned in such a 
way that the model step responses fit with 
experimental step responses. Thirteen tonnes of 
material was initially loaded in the mill. 
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Figure 5: Percentage of fine particle 
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Figure 7: Illustration of loading rate dependence of the 

grinding performance  
a) Effect of solid flow rate on grinding rate 
b) Effect of solid flow rate on hold-up  

Instead of trying to find a mathematical expression 
of disturbances, a state observer in equation (27) can 
be used to estimate it and compensate for it in real 
time.  
As a result, for the system in equations (22)-(24), 
using equation (27) the estimation of the material 
grinding rate, ; the charge portion that is under 

going grinding per unity of input energy, ; the 

material fineness ,  and the raw material 

hardness, is as follows: 

1̂( )x t

2ˆ ( )x t

3ˆ ( )x t

4ˆ ( )x t
1

2

3

4

ˆ0 1 0 0
ˆ1 1 0 0

ˆ
ˆ0 0 0 1
ˆ0 0 1 1

x
x

Ax
x
x

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥= ×
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

−⎣ ⎦ ⎣ ⎦

         (29) 

1

2

3

4

ˆ0 0 0
ˆ0 0 0

ˆ( , , )
ˆ0 0 exp( ) 0 0
ˆ0 0 0 1

xu o
xa d

h x y u u
xb u
xc

ε

ε

⎡ ⎤⎡ ⎤ ⎡
⎢ ⎥

⎤
⎢ ⎥ ⎢− ⎢ ⎥

⎥
⎢ ⎥ ⎢= ×

⎢ ⎥
⎥+

⎢ ⎥ ⎢
⎢ ⎥

⎥
⎢ ⎥ ⎢

−
⎥

⎣ ⎦ ⎣⎣ ⎦ ⎦

 

(30) 
ˆiy y C x= −%            (31) 

1 1

2 2

3 3

4 4

ˆ1 0 0 0 1 0 0 0
ˆ1 0 0 0 1 0 0 0
ˆ0 1 0 0 0 0 1 0
ˆ0 1 0 0 0 0 1 0

y x
y x

y
y x
y x

⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤ ⎤
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥= × − ⎥×
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
⎥

⎣ ⎦ ⎣

%

⎦

i

(32) 

1 1
i iM Kθδ
− −ϒ =            (33) 

2
1 1 111

4 2 2
1 1 1 11 1 1 2 1 11 1 122

2
3 3 2 2 21

4 24 3 2 21 3 3 4 2 22 21 2

ˆ 1

ˆ ˆ ˆ2(0.5 0.5 )

ˆ ˆ exp( ) 1

ˆ ˆ(2 ) 2 ( )

x k u

x x k x x x k k

x x u k

x k x x x k k

θ ε

θ θ θ

ε θ

θ θ θ

⎡ ⎤− + + +ϒ⎡ ⎤ ⎢ ⎥⎢ ⎥ − + + − + +ϒ ⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥ϒ − + + +⎢ ⎥⎢ ⎥ ⎢ ⎥ϒ⎣ ⎦ − + − + +⎣ ⎦
 (34) 
In figures 8, 9 are shown the simulation results for 
the observer and the system, while the tracking error 
is shown in fig.10, 11. 
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Figure 8: Output response of the system and the observer 
a.) Rate of change of mass fraction 
b.) Grindability 
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Figure 9:  Output response of the system and the observer 

a.) Percentage of fine particle 
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Figure 10: Grindability and rate of change tracking error 

6 ROBUSTNESS AGAINST 
STRUCTURAL UNCERTAINTY  

In practice, from the test results, correlation for 
samples could not be obtained because of different 
geological origins. However, experimental 
relationships between dynamic elastic parameters 
and Bond grindability, (Van Heerden, 1987), were 
used to valid the observer simulation results. In the 
dynamical analysis the dynamics of the error system, 
obtained by combining the experimental process 
results with the observer designed is analysed. 
Fig.12 shows that the observer is stable for unknown 
input.  
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Figure 12: Observer convergence for unknown input 

7 DISCUSSION 

As a case study of mineral processing, the wet 
grinding ball mill operated in continuous or fed-
batched mode has been studied. Simulation results 
showed that significant part of the steady state error 
is due to the model part and thus independent of the 
observer design methodology. The robustness 
against parametric and structural uncertainty can be 
increased, although this will increase the noise 
sensitivity.  Since we herein want to track only the 
truly time-varying features of the process dynamics, 
the state observer designed strategy is satisfactory.  
The load within the mill should be controlled at a 
well chosen level because too high levels of the load 
in the mill create process disturbances. The output 
product fineness depends on the solids rate flow. In 
view of the approximations involved in this 
treatment, the agreement between the observer and 
the model is remarkable. The estimation of the 
observer converges to zero exponentially. 

8 CONCLUSION  

We have described symbolic computations for 
reducing a nonlinear system to observable forms. 
These tools can be applied to systems that are 
linearly observable, locally observable with zero 
input or merely locally observable. 
The key impact of this development lies in the 
system ability, to reduce material residence time, to 
flow information and material in a much-improved 
manner with the appropriate control strategy. 
Additional elements to be considered in the 
evaluation of the performance of the observer are 
distributed parameters effects due to the large 
sampling intervals often encountered in mineral 
applications. 
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