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Abstract: We propose a general and simple method that handles free (or point-to-point) motion planning problem for 
redundant and non-redundant serial robots.  The problem consists of linking two points in the operational 
space, under constraints on joint torques, jerks, accelerations, velocities and positions while minimizing a 
cost function involving significant physical parameters such as transfer time and joint torque quadratic 
average.  The basic idea is to dissociate the search of optimal transfer time T from that of optimal motion 
parameters.  Inherent constraints are then easily translated to bounds on the value of T.  Furthermore, a 
stochastic optimization method is used which not only may find a better approximation of the global 
optimal motion than is usually obtained via traditional techniques but that also handles more complicated 
problems such as those involving discontinuous friction efforts and obstacle avoidance. 

1 INTRODUCTION 

Motion planning constitutes a primordial phase in 
the process of robotic system exploitation.  It is a 
challenging task because the robot behaviour is 
governed by highly non linear models and is 
subjected to numerous geometric, kinematic and 
dynamic constraints (Latombe, 1991) (Angeles, 
1997) (Chettibi, 2001).  Two categories of motions 
can be distinguished (Angeles, 1997) (Chettibi, 
2000).  The first covers motions along prescribed 
geometric path and correspond, for example, to 
continuous welding or glowing operations (Bobrow, 
1985) (Kang, 1986) (Pfeiffer, 1987) (Chettibi, 
2001b).  The second, which is the focus of this 
paper, concerns point-to-point (or free) motions 
involved, for example, in discrete welding or pick-
and-place operations (Bessonnet, 1992) (Mitsi, 
1995) (Lazrak, 1996) (Danes, 1998) (Chettibi, 
2001a).   In general, many different ways are 
possible to perform the same task.  This freedom of 
choice can be exploited judiciously to optimize a 
given performance criterion.  Hence, motion 
generation becomes an optimization problem.  It is 

here referred to as the optimal free motion planning 
problem (OFMPP). 

In the specialized literature, various resolutions 
methods have been proposed to handle the OFMPP.  
They can be grouped in two main families; namely: 
direct and indirect methods (Hull, 1997) (Betts, 
1998).  The indirect methods are, in general, 
applications of optimal control theory and in 
particular Pontryagin Maximum Principle (PMP) 
(Pontryagin, 1965).  Optimality conditions are stated 
under the form of a boundary value problem that is 
generaly too difficult to solve (Bessonnet, 1992) 
(Lazrak, 1996) (Chettibi, 2000).  Several techniques, 
such as the phase plane method (Bobrow, 1985) 
(Kang, 1986) (Jaques, 1986) (Pfeiffer, 1987), exploit 
the structure only of the optimal solution given by 
PMP and get numerical solutions via other means.  
In general, such techniques are applied to limited 
cases and have several drawbacks resumed below: 

 They require the solution of a N.L multi-point 
shooting problem (David, 1997) (John, 1998 ), 

 They require analytical computing of gradients 
(Lazrak, 1996) (Bessonnet, 1992), 
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 The region of convergence may be small 
(Chettibi, 2001) (Lazrak, 1996), 

 Path inequality are difficult to handle (Danes, 
1998), 

 They introduce new variables known as co-state 
variables that are, in general, difficult to estimate 
(Lazrak, 1996) (Bessonnet, 1992) (Danes, 1998) 
(Pontryagin, 1965). 

 In minimum time transfer problems, they lead to 
discontinuous controls (bang-bang) that may 
create many practical problems (Ola, 1994) 
(Chettibi, 2001a).  In fact, the controller must 
work in saturation for long periods.  The optimal 
control leaves no control authority to compensate 
for any tracking error caused by either unmodeled 
dynamics or delays introduced by the on-line 
feedback controller 

To overcome these difficulties, direct methods have 
been proposed.  They are based on discretisation of 
dynamic variables (states, controls).  They seek to 
solve directly a parameter optimization problem.  
Then, N.L. programming (Tan, 1988) (Martin, 1997) 
(Martin, 1999) (Chettibi, 2001a) or stochastic 
optimization techniques (Chettibi, 2002b) are 
applied to compute optimal values of parameters.  
Other ways of discretisation can be found in 
(Richard, 1993) (Macfarlane, 2001).  These 
techniques suffer, however, from numerical 
explosion when treating high dimension problems. 
Although they have been used successfully to solve 
a large variety of problems, techniques based on 
N.L. programming (Fletcher, 1987) (David, 1997) 
(Danes, 1998) (John, 1998) (Chettibi, 2000) have 
two essential drawbacks: 

  

 They are easily attracted by local minima ; 
 They generally require information on gradiant and 
hessian that are difficult to get analytically.  In 
addition, continuity of second order must be 
ensured, while realistic physical models may 
include some discontinuous terms (frictions). 

 

In parallel to these methods, that take into 
account both kinematics and dynamics aspects of the 
problem, numerous pure geometric planners have 
been proposed to find solutions for the simplified 
problem that consists of finding only feasible 
geometric paths (Piano movers problem) (Latombe, 
1991) (Overmars, 1992) (Barraquand, 1992) 
(Kavraki, 1994) (Barraquand, 1996) (Kavraki, 1996) 
(Latombe, 1999) (Garber, 2002).  In spite of this 
simplification, the problem still remains quite 
complex with exponential computational time in the 
degree of freedom (d.o.f.).  Of course, any extension 
(presence of obstacles, for example) adds in 
computational complexity.  Even so, various 
practical planners have been proposed.  Reference 

(Latombe, 1991) gives an excellent overview of 
early methods (before 1991) such as: potential field, 
cell decomposition and roadmap methods, some of 
which have shown their limits.  For instance, a 
potential field based planner is quickly attracted by 
local minima (Khatib, 1986) (Latombe, 1991) 
(Barraquand, 1992). Cell decomposition methods 
often require difficult and quite expensive geometric 
computations and data structures tend to be very 
large (Latombe, 1991) (Overmars, 1992).  The key 
issue for roadmap methods is the construction of the 
roadmap.  Various techniques have been proposed 
that produce different sorts of roadmaps based on 
visibility and Voronoi graphs (Latombe, 1991).    

During the last decade, interest was given to 
stochastic techniques to solve various forms of 
optimal motion planning problems.  In particular, 
powerful algorithms were proposed to solve the 
basic geometric problem.  Probabilistic roadmaps 
(PRM) or Probabilistic Path Planners (PPP) were 
introduced in (Overmars, 1992) (Barraquand, 1996) 
(Kavraki, 1994) (Kavraki, 1996) and applied 
successfully to complex situations.  They are 
generally executed in two steps: first a roadmap is 
constructed, according to a stochastic process, then 
the motion planning query is treated.  Due to the 
power of this kind of schemes, many perspectives 
are expected as shown in (Latombe, 1999).  
However, there are few attempts to apply them to 
solve the complete OFMPP.  References (LaValle, 
1998) (LaValle, 1999) propose the method of 
Rapidly exploring Random Trees (RRTs) as an 
extention of PPP to optimize feasible trajectories for 
NL systems.  Dynamic model and inherent 
constraints are taken into account.   

In (Chettibi, 2002a), we introduced a different 
scheme using a sequential stochastic technique to 
solve the OFMPP.  We present here this simple and 
versatile method and how it can be used to handle 
complex situations involving both friction efforts 
and obstacle avoidance. 

2 PROBLEM STATEMENT  

Let us consider a serial redundant or non-redundant 
manipulator with n d.o.f.. Motion equations can be 
derived using Lagrange's formalism or Newton-
Euler formalism (Dombre, 1988) (Angeles, 1997): 

( ) ( ) ( ) τ=++ qGqqQqqM &&& ,      (1a), 
q,  and are respectively joints position, velocity, 
acceleration vectors.  M(q) is the inertia matrix. 
Q( ) is the vector of centrifugal and Coriolis 
forces in which joints velocities appear under a 

q& q&&

qq &,
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quadratic form.   G(q) is the vector of potential 
forces and τ  is the vector of actuator efforts. 
 
In order to make the dynamic model more realistic, 
we may introduce, for the ith joint, friction efforts as 
follows: 

)())(()())((

))(),(()())((
1

ttqsignFtqFtqG

tqtqQtqtqM

i
s

i
v

ii

i

n

j
jij

τ=+++

+∑
=

&&

&&&    (1b), 

V
iF and  are, respectively, sec and viscous 

friction coefficients of the i

s
iF

th joint.  
The robot is required to move freely from an initial 
state Pi to a final state Pf, both of which are specified 
in the operational space.  In addition to solving for 
τ(t) and transfer time T, we must find the trajectory 
defined by q(t) such as the initial and the final state 
are matched, constraints are respected and a cost 
function is minimized.   

The cost function adopted here is a balance 
between transfer time T and the quadratic average of 
actuator efforts: 

∫∑
=

⎟⎟
⎠
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⎝
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+=
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)t(
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2
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τ
τµµ  (2). 

µ is a weighting coefficient chosen from [0,1] and 
according to the relative importance we would like 
to give to the minimization of T or to the quadratic 
average of actuator efforts. The case 
µ = 1 corresponds to the optimal time free motion 
planning problem. 

Constraints that must be satisfied during the 
entire transfer (0  ≤  t  ≤ T) are summarized bellow:    
 for  i = 1, …, n  we have bounds on: 
 

- Joint torques: 
 ( ) max

ii t ττ ≤                (3a); 
- Joint jerks :  

 ( ) max
ii qtq &&&&&& ≤         (3b); 

- Joint accelerations: 
 ( ) max

ii qtq &&&& ≤                     (3c); 
- Joint velocities:   

 ( ) max
ii qtq && ≤                       (3d); 

- Joint positions:   
 ( ) max

ii qtq ≤                                    (3e). 
 

Of course, non-symmetrical bounds on the above 
physical quantities can also be handled without any 
new difficulty.   

Relations (3a, b, c, d and e) traduce the fact that 
not all motions are tolerable and that power 
resources are limited and must be used rationally in 
order to control correctly the robot dynamic 

behavior.  Also, since joint position tracking errors 
increase with jerk, constraints (3b) are introduced to 
limit excessive wear and hence to extend the robot 
life-span (Latombe, 1991) (Piazzi, 1998) 
(Macfarlane, 2001).   

 
In the case where obstacles are present in the 

robot workspace, motion must be planned in such a 
way collision is avoided between links and 
obstacles.  Therefore, the following constraint has to 
be satisfied : 

 C(q)=False            (3f). 
The Boolean function C indicates whether or not the 
robot at configuration q is in collision with an 
obstacle.  This function uses a distance function 
D(q) that supplies for any robotic configuration the 
minimal distance to obstacles.   

3 REFORMULATION OF THE 
PROBLEM 

The normalization of the time scale, initially used to 
make the problem with fixed final time, is exploited 
to reformulate the problem and to make it propitious 
for a stochastic optimization strategy. Details are 
shown bellow.  

3.1 Scaling 

We introduce a normalized time scale as follows: 
T.xt =      with             (4). [ ]1,0∈x

Hereafter, we will use the prime symbol to indicate 
derivations with respect to x : 

( ) ( )
,",'

2

2

dx
xqd

q
dx
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3

3
'"

dx
xqd

q =    (5). 

Relations (1a) and (1b) can be written as follows:  
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3.2 Cost function 

With the previous notations, the cost function (2) 
becomes without friction efforts:  

⎟
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Where S0, S2 and S4 are given by: 
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  It must be noted that S0, S2 and S4 are real 
coefficients that do depend on the joint evolution 
profile q(x) but that do not depend on T.  Also, S0 
and S4 are always positive.  Expression (9) 
represents a family of curves whose general shape, 
for any feasible motion, is shown in figure 1a.  The 
minimum of each of these curves is reached when T 
takes on the value T = Tm  given by : 
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If friction efforts are taken into account, we 
introduce the following quantities: 
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The expression of (2) becomes then : 
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For a given profile q(x), (13) represents a family of 
curves whose general shape is shown in figure 1b, 
but now the asymptotic line intersects the time axis 
at .  Furthermore, T01 /SS - T = m has to be 
computed numerically since (11) is no longer 
applicable. 

3.3 Effects of constraints 

Constraints imposed on the robot motion will be 
handled sequentially within the iterative process of 
minimization described in the next section.  Already, 
we can group constraints into several categories 
according to the stage of the iterative process at 
which they will be handled. 

3.3.a Constraints of the first category 

In the first category, we have constraints that will 
not add any restriction on the value of T.  For 
example, joint position constraints (3e) become:  

( ) [ ] nixqxq ii ,,11,0max K=∈∀≤      (15), 

and those due to obstacles presence (3f) become : 
  C(q(x))=False   [ ]1,0∈∀x           (16) 

 
In both cases, only the joint position profiles q(x) are 
determinant. 

3.3.b Constraints of second category 

In the second category, we have constraints that can 
be transformed into explicit lower bounds on T.  For 
example joint velocity constraints lead to:    
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Joint acceleration and jerk constraints are 
transformed in the same way to give: 

Figure 1. General shape of the cost function;  
(a) without friction efforts , (b) with friction efforts 

Fobj Fobj

TTm 

Tm 
T  -S4/S0

Fig. 1a Fig. 1b 
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For accelerations:                     

 T≥Ta  ,    [ ]
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Figure 3: New exploration region defined by  
a new lower value of Fbest. 
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Thus, (17), (18) and (19) define three lower bounds 
on transfer period.  In consequence; T must satisfy 
the following condition:  

T≥ T* ,          T*=max(Tv, Ta, TJ)              (20),                                           

This type of constraints defines a forbidden region 
as shown in figure 2.  Note that two cases are 
possible.  

 

 
 
                           
 
 
 
 
 
 
 
 

3.3.c Constraints of third category 
In the third category, we have constraints that can be 
transformed into explicit bilateral bounds on T.  For 
example those imposed on the value of joint torques 
(3a) define, in general, bracketing bounds on T, 
namely: TL and TR.  In consequence, 

T∈[TL, TR]      (21). 
A fourth category might be included and would 
concern any other constraint that does add 
restrictions on T  but that cannot be easily translated 
into simple bounds on T. 

4 STRATEGY OF RESOLUTION 

The iterative process of minimization proposed here 
includes the following steps: 
 
Step 1: Generate a random (or guessed) temporal 
evolution shape qi(x) for each of the joint variables, 

taking into account any constraints of the first 
category (15), (16) as well as any conditions 
imposed on the initial and the final state.  
 
Step 2:  Get the S coefficients from (10) or (14) and 
Tm from (11) or by numerical means.  If F(Tm) is 
greater than Fbest obtained so far, then there is no 
need to continue and hence, return to Step 1. 
Otherwise, a first bracketing interval [T1, T2] is 
deduced (Fig. 3) in which F is decreasing from T1 to 
Tm and increasing from Tm to T2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The remaining steps will simply consist of changing 
T1, Tm or T2 while keeping this bracketing.   
 
Step 3: Get Ta, Tv, Tj from (17, 18, 19) and T* from 
(20).  If T* > T2 then return to Step 1 else modify T1 
and/or Tm according to Fig. 2.  That is: in case (a) T1 
← T*  while in (b)  T1 ← T* and Tm ← T*.   
 
Step 4:  Get [TL, TR] from (21).  If TL > T2 or TR < T1 

then return to Step 1.  Otherwise, we have a 
new improved Fbest :  

 

If  Tm ∈ [TL, TR]  then   
      Fbest ← F(Tm) 
Else if  Tm < TL  then 
      Fbest ← F(TL) 
Else 
      Fbest ← F(TR) 
End if 

The above steps can be imbedded in a stochastic 
optimization strategy to determine better profiles 
qi(x), i = 1,… n, leading to lower values of the 
objective function. 
 
One way to get a guessed temporal evolution shape 
qi(x) for the joint variables, at any stage of 
optimization process, is to use randomly generated 
clamped cubic spline functions with nodes 
distributed for x ∈ [0,1] (Fig. 4).   

Tm T* 

T 

Fobj Fobj 
Case b: T* >Tm Case a: T* <Tm 

Forbidden 
region 

Forbidden 
region 

T* Tm T 
Figure 2: Bounds on transfer time value due to constraints of 

second category 
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Figure 4: Approximation of joint position temporal 
evolution.
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5 NUMERICAL RESULTS 

We consider here a redundant planar robot 
constituted of four links connected by revolute 
joints. The corresponding geometric and inertial 
characteristics are listed in Appendix A. It is asked 
to move among two static obstacles disposed in it’s 
work space at respectively (2, 1.5) and (-1.5, 1.5) 
with both unity radius. The robot begin at (π/4, -π/2, 
π/4, 0) and stops at  (π/2, 0, 0, 0). Boundary 
velocities are null. The numerical results are 
obtained with µ=0.5 for both cases:  with and 
without friction efforts. The corresponding optimal 
motions are depicted in Figures 5a, b, c, d, e and f.   
In fact, without introducing friction effort we get : 
Fobj = 2.7745(s)  and  Topt = 4.9693 (s).In the 
presence of friction efforts we get a different result: 
Fobj = 3.1119 (s)  and Topt = 5.3745 (s). Hence, to 
achieve the same task, we need more time and more 
effort in the presence of friction efforts.  
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Figure 5c: Evolution of joint torques with friction 
effect 
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Figure  5d. Evolution of joint positions with friction 
effect  
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Figure 5e: Evolution of joint torques without 
friction effect 
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Figure 5a: Aspect of motion without friction effect 
Figure  5f: Evolution of joint positions without 

friction effect 

6 CONCLUSION 

In this paper we have presented a simple trajectory 
planner of point-to-point motions for robotic arms. 
The problem is highly non-linear due first to the 
complex robot dynamic model that must be verified 
during the entire transfer, then to the non-linearity of Figure 5b: Aspect of motion with friction effect 
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the cost function to be minimized and finally to 
numerous constraints to be simultaneously 
respected. The OFMPP is originally an optimal 
control one and has been transformed into a 
parametric optimization problem. The optimization 
parameters are time transfer T and the position of 
nodes defining the shape of joint variables. The 
research of T has been separated from that of the 
others parameters in order to make the computing 
process efficient and to handle constraints easily by 
transforming them into explicit bounds on T possible 
values. In fact, the various possible constraints have 
been regrouped in four families according to their 
possible effects on T values and then have been 
handled sequentially during each optimization step. 
Nodes, defining q(x) shape, are connected by cubic 
spline functions and their positions are perturbed 
inside a stochastic process until the objective 
function value is sufficiently reduced while all 
constraints are all satisfied. This ensured smoothness 
of resulted profiles.  The objective function has been 
written under a weighting form permitting to make 
balance between reducing T and magnitude of 
implied torques.  
 
Numerical examples, where a stochastic 
optimization process, implementing the proposed 
approach, has been used along with cubic spline 
approximations, and dealing with complex 
problems, such as those involving discontinuous 
friction efforts and obstacle avoidance, have been 
presented to show the efficiency of this technique. 
Others successful tests have been made in parallel 
for complex robotic architectures, like biped robots, 
will be presented in a future paper.   
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Appendix A: Characteristics of the 4R robot. 
 

Joint N° 1 2 3 4 
α (rad) 0 0 0 0 
d(m) 0 1 1 1 
r(m) 0 0 0 0 
a(m) 0 0 0 0 
M(kg) 5 4 3 2 
Izz(kg.m2) 1 0.85 0 0 
τ(N.m) 25 20 15 5 
Fs (N.m) 0.7 0.2 0.5 0.2 
Fv (N.m.s) 1 0.2 0.5 0.2 
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