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Abstract: Many real-world domains, such as industrial diagnosis, require an adequate representation that combines 
uncertainty and time. Research in this field involves the development of new knowledge representation and 
inference mechanisms to deal with uncertainty and time. Current temporal probabilistic models become too 
complex when used for real world applications. In this paper, we propose a model, Temporal Events 
Bayesian Networks (TEBN), based on a natural extension of a simple Bayesian network. TEBN tries to 
make a balance between expressiveness and computational efficiency. Based on a temporal node definition, 
causal-temporal dependencies are represented by qualitative and quantitative relations, using different time 
intervals within each variable (multiple granularity). Qualitative knowledge about temporal relations 
between variables is used to facilitate the acquisition of the quantitative parameters. The inference 
mechanism combines qualitative and quantitative reasoning. The proposed approach is applied to a thermal 
power plant through a detailed case study, with promising results. 

1 INTRODUCTION 

In the last years the operating conditions of thermal 
power plants have changed. Today, the operation of 
thermal power plants must be optimal considering 
higher productions profits, safer operation and 
stringent environment regulation. An additional 
factor is the increment of the age of the plants. The 
reliability and performance of the plants is affected 
by its age. This means and increase in the number of 
equipment failures, thus increasing the number of 
diagnoses and control decisions which the human 
operator must make. Under this conditions the 
complexity of the operation of thermal power plants 
have been increased significantly. 

As a result of these changes, the computer and 
information technology have been extensively used 
in thermal plant process operation. Distributed 
control systems (DCS) and information management 
systems (IMS) have been playing an important role 
to show the plant status. However, in nonroutine 
operations such as equipment failures and extreme 
operation (start up phase, changes in the load, etc.), 
human operators have to rely on their own 
experience. During disturbances, the operator must 
determine the best recovery action according to the 

type and sequence of the signals received. In a major 
upset, the operator may be confronted with a large 
number of signals and alarms, but very limited help 
from the system, concerning the underlying plant 
condition. Faced with vast amount of raw process 
data, human operators find it hard to contribute a 
timely and effective solutions.  

The process industry demands new computer 
integrated technologies the reduce operator´s 
working burden by providing operation support 
systems. Process operations are knowledge-intensive 
work task because thermal plants are large, complex 
and influenced by unexpected disturbances and 
event over the time. Artificial Intelligent applications 
and expert systems in particular, are recognized as 
providing efficient solutions to wide range of 
industrial problems. 

Artificial intelligence applications are showing a 
trend toward to real world domains, such as medicine, 
real-time diagnosis, communications, planning, 
financial forecasting and scheduling. These 
applications have revealed a great need for powerful 
methods for knowledge representation. In particular, 
the evolutionary nature of these domains requires a 
representation that takes into account temporal 
information. The exact timing information for things 
like lab-test results, occurrence of symptoms, 
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observations, measures, as well as faults, can be 
crucial in this kind of applications.  

Aside from temporal considerations, the world 
domain knowledge is imprecise, incomplete and not 
deterministic. The temporal model must be able to 
deal with uncertainty. Among the many formalism 
proposed for dealing with uncertainty, one of the most 
used techniques for the development of intelligent 
systems are probabilistic networks, also known as 
Bayesian Networks, causal networks or probabilistic 
influence diagrams. Bayesian networks (BN) are a 
robust and sound formalism to represent and handle 
uncertainty in intelligent systems in a way that is 
consistent with the axioms of probability theory (Pearl, 
2000). Although BN were not designed to model 
temporal aspects explicitly, recently Bayesian 
networks have been applied to temporal reasoning 
under uncertainty (Santos 1996; Arroyo and Sucar, 
1999, Galan and Diez 2002). Prior temporal modeling 
techniques have often made a trade-off in 
expressiveness between semantics for time and 
semantics for uncertainty. Therefore, to integrate 
uncertainty and time, it’s necessary a combined 
approach integrating strong probabilistic semantics for 
representing uncertainty and expressive temporal 
semantics for representing temporal relations. 

In this paper, we present the definition and 
application of an approach for dealing with 
uncertainty and time called Temporal Event 
Bayesian Network, based on a natural extension of a 
simple Bayesian network. TEBN tries to make a 
balance between expressiveness and computational 
efficiency. Based on a temporal node definition, 
causal-temporal dependencies are represented by 
qualitative and quantitative relations, using different 
time intervals within each variable (multiple 
granularity. The inference mechanism combines 
qualitative and quantitative reasoning. The proposed 
approach is applied to the diagnosis and prediction 
of events and disturbances (events sequence) to 
assist the operator in real time assessment of plant 
disturbances, and in this way contribute to the safe 
and economic operation of thermal power plants. 

2 DEFINITION OF A TEBN. 

Temporal Event Bayesian Network (TEBN) allows the 
representation of temporal and atemporal information 
in a probabilistic framework. A TEBN is capable of 
representing each variable with its interactions over 
multiple points of time. The domain is defined over 
time intervals. The state of the domain is represented 
by a value at a given time interval. Santos (Santos 
1996) use a similar concept, but they used the time 
interval only as a temporal constraint. In our approach, 

a time interval is an additional component of the 
network. 

TEBN make a balance between the robust 
semantics of Bayesian Networks and the expressive 
temporal semantics of the interval algebra. The 
temporal expressiveness is defined by the time 
intervals. The balance between the exactness and the 
complexity of the temporal model is a function of 
the numbers of time intervals.  

Intuitively, a temporal node consists of a set of 
states or values, e.g. {true, false}, {occur, does not 
occur}, {high, normal, low}, that the variable or 
event can take, and a set of temporal intervals 
associated to each state or value of the variable or 
event. 

Definition 1. A Temporal Node (TN) is an 
ordered pair (E, I) in which E is a set of states or 
values of a random variable, and I is a set of time 
intervals associated to each state or value of the 
variable. 

Definition 2. A causal-temporal relationship 
(CTR) describes a relationship between two 
temporal nodes A(Ea, Ia) and B(Eb, Ib), where A is 
considered the “cause” and B is considered the 
“effect”. Formally, the CTR is written as A(R, P)B 
where R is the set  of temporal qualitative 
relationship between the time intervals, and P is the 
causal-temporal quantitative relationship, defined as 
a conditional probability matrix. Graphically, a CTR 
is represented by a directed edge from the cause 
node to the effect node, labeled with R, with a joint 
probability distribution P. 

A Temporal Event Bayesian Network is a 
directed acyclic graph, which consists of finite set of 
temporal nodes and a finite set of causal-temporal 
relationships. 
 Definition 3. A TEBN is an ordered pair, (N, T), 
where N is a set of temporal nodes and T is set of 
causal-temporal relationships given by R and P. Then 
EBN=(E, I, R, P) is called a Temporal Event Bayesian 
Network. 

The TEBN model has two reasoning 
mechanisms: qualitative and quantitative temporal-
causal reasoning. Qualitative reasoning is based on 
the interval algebra [Allen, 1983]. It is important to 
know the qualitative information about the timing 
relationships between the events. The qualitative 
reasoning has two levels of abstraction. In a superior 
level, we use a simplified temporal diagram of the 
history of the process using Allen’s representation in 
order to define the general relation between the 
temporal range of occurrence of the events. In an 
inferior level, we apply the transitivity algorithm to 
get the temporal relations between each time interval 
that defines the temporal node. Qualitative reasoning 
permits an early diagnosis of the domain based on 
the temporal consistency. This early diagnosis gives 

ICINCO 2004 - INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION

152



 

a preliminary idea about state of domain. The 
qualitative mechanism is explained in more detail in 
the example of the next section. 

The quantitative reasoning mechanism is based 
on probability propagating. The method for 
propagating probabilities of a TEBN is an extension 
of the polytree and multiconnected algorithms 
proposed in the literature (Pearl, 2000). For some 
evidence e at the time interval u the posterior 
probability of a variable B is as follows: 

 
P(e,uk ⏐ bi,oj) P(bi,oj) 

P((bi oj) | (e,uk)) = ------------------------ 
        P(e,uk) 

 
where P((bi,oj) | (e,uk)) is the probability associated to 
the value bi in time interval oj given the evidence e in 
the time interval uk. 

The reasoning in TEBN consists in instantiating the 
input temporal variables (this can be any variable into 
the network) and propagating their effect through the 
network to update the probability of the hypothesis 
variables (diagnosis and prediction). The reasoning 
mechanism starts when a temporal variable is 
instantiated, and the probability of all temporal nodes 
is update. The quantitative reasoning gives the state of 
the domain with some probability value. 

The qualitative knowledge about temporal 
relations between temporal nodes is relatively easy to 
obtain from domain experts. With this knowledge is 
possible to know the temporal relations between 
events and this is used to facilitate the acquisition of 
the quantitative parameters (conditional probabilities). 
For instance, given a particular qualitative relation 
between nodes A and B, some values in the 
conditional probability matrix, P(B/A), are set to zero. 

3 AN EXAMPLE OF 
APPLICATION 

As an illustrative example, we present the drum level 
disturbance when a power load increment occurs. The 
drum is a subsystem of a thermal power plant. This 
subsystem provides steam to the superheater and water 
to the water wall of a steam generator. Figure 1 shows 
a simplified diagram of a drum system in a thermal 
power plant. For the proposes of demonstration, 
assume the following hypothetical case. 

"The drum is a tank with a steam valve at the 
top, a feedwater valve at the bottom, a feedwater 
pump which provides water to the drum and a level 
control system. The drum level (DRL) can increase 
by the increase of the feedwater flow (FWF). The 
feedwater flow can increase by two main causes: the 
augmentation in the current of feedwater pump 

(FWP) and the increase of the opening of the 
feedwater valve (FWV). This will lead to an increase 
in drum level to a dangerous level. The operator 
must open the steam valve in order to increase the 
steam flow. This will lead to a reduction of the water 
drum level in the drum tank so that the level will 
decrease to safe levels. Both disturbance can lead to 
down thermal power plant”. 

 

Figure 1: Steam Generator Drum system. 

In the process, a signal exceeding its specified limit 
of normal functioning is called as an event, and a 
sequence of events that have the same underlying 
cause are considered as a disturbance. In the 
example, the feedwater flow (FWF) can be caused 
by two different disturbances: a power load 
increment or a control system failure. These 
disturbances are characterized respectively by the 
feedwater current augmentation (+FWP) and 
feedwater opening increase (+FWV).  

To determine which of both disturbances are 
present is a complicated task. We need additional 
information to determine which it is the real cause. 
One of these is the temporal information. We can 
select the hypothesis of failure according to the time 
interval in which the disturbance occurs. The 
dynamic of the FWP is faster than the dynamic of 
the FWV. In order to reason about the sequence of 
facts and disturbances that occur, we require a 
temporal representation. 

The knowledge representation uses the Allen’s 
interval algebra (Allen, 1983) and its thirteen 
relations as temporal basis definition and a 
probabilistic framework for dealing with quantitative 
uncertainty. Figure 2 and table 1, depict a small 
TEBN with five temporal nodes, four edges, 
temporal relations between nodes and a priori 
probabilities. Each temporal node is associated to its 
time intervals., all nodes except the node steam 
valve have two time intervals. The formalism is 
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based on the probability of the event occurrence at a 
time interval. In this case, the TEBN is an event 
network (occurs or does not occur): the event occurs 
at the time interval one (for example FWP, O1); the 
event occurs at the time interval two (FWP, O2); and 
the event does not occur (FWP). The events might 
occur only in single time interval. 

 

Figure 2: TEBN for Drum system example. 

Table 1: Event probabilities for TEBN 

Event Probabilities 
FWV, I1 
FWV, I2 
¬FVW 

0.30 
0.60 
0.10 

FWP, O1 
FWP, O3 
¬FWP 

0.60 
0.30 
0.10 

FWF, U1 
FWF, U2 
¬FWF 

0.51 
0.48 
0.01 

STV, Q1 
STV, Q2 
STV, Q3 
¬STV 

0.47 
0.29 
0.12 
0.12 

DRL,R1, 
DRL, R2 
¬DRL 

0.51 
0.48 
0.01 

4 PROCESS DIAGNOSIS 
EXAMPLE 

In this section we present the application of the 
TEBN model for diagnosis of disturbances in the 
drum system depicted in section three. According to 
the example, there are two possible causes of an 
increase in the feedwater flow (FWF): an 

augmentation in feedwater pump current and an 
increase in the opening of the feedwater valve.  

Figure 3 and figure 4 show the simplified 
temporal diagram and the consistent scenario of the 
drum level disturbance. Theses diagrams define the 
qualitative temporal relation between the time range 
of event occurrence. For instance the temporal 
relation between the temporal range of FWP and 
FWF is start and the temporal relation between the 
temporal range of FWV and FWF is finishes. FWV
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Figure 3: Simplified temporal diagram of the drum 
system. 

Figure 4: Temporal consistent scenario of the drum 
system. 

Figure 5, shows the temporal relations between the 
time intervals of node FWP and node FWF. The 
intervals at the top, O1 and O2 represent the time 
intervals of FWP and the intervals U1 and U2 
represent the time interval of the FWF. The relations 
between the four intervals are shown in the right. 
These relations can be obtained for each pair of 
nodes. Both diagrams, permits to made a preliminary 
selection of hypotheses and give an initial idea about 
the disturbance (faulty) that occurs. For this the time 
relations are considered, which produce a set of 
temporal constraints that permit to select some 
hypotheses using a consistency algorithm.  
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Figure 5: Temporal relations between the FWP and FWF 

time intervals 
 

Quantitative reasoning in the TEBN gives the most 
probable hypotheses. The causal-temporal 
relationships between events are used for 
determining the most probable cause (disturbance). 
For instance, the figure 6 depicts the case when the 
event drum level high (DRL) occurs in the time 
interval R1. In this case the most probable cause is a 
feedwater pump current augmentation (+FWP). This 
disturbance may be characterized by a power load 
increase.  

Figure 6: The drum level high occurs at the time interval 
R1 

Figure 7 depicts the case when the drum level high 
(DRL) occurs in the time interval R2. In this case the 
most probable cause is an increase in the opening of 
the feedwater valve. This disturbance may be 
characterized by a failure in the level control system. 
To confirm which is the most probable disturbance 
is needed the time of occurrence of the increase of 
feedwater flow. This reasoning makes it possible to 
answer questions such as: “The event drum level 
high occurred 1:30 minutes after that the feedwater 
flow increase occurred. What is the most probable 
disturbance (cause)?”. 
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Figure 7: The drum level high occurs at the time interval 
R2 

In this model, the time range definition of the 
intervals is independent of the hour of the day. In 
many real-domains the events do not occur as a 
function of the day hour. Under this situation, the 
TEBN is a model relative, not absolute. The 
reasoning mechanism starts when any event in the 
network is detected. The time interval definition is 
only dependent of the causal-temporal relationships 
between the events.  
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The use of qualitative reasoning mechanism 
permits an early diagnosis. The early diagnosis gives 
a preliminary idea of the events and disturbance that 
occurred. The quantitative reasoning gives the 
occurrence of events and disturbances with some 
probability values. The TEBN has been applied into 
two systems of a steam generator: drum level system 
and condenser system. The result obtained in this 
two subsystems indicate that it can be useful for 
many uncertainty temporal reasoning tasks that 
involve prediction and diagnosis in real complex 
environments (Arroyo et al., 2000). 

5 EMPIRICAL EVALUATION 

Table 2 summarizes the results of simulating failures 
for the four disturbances of the feedwater and 
superheater systems. The process data was generated 
by a full scale simulator of a thermal power plant. We 
selected 80% of this data-base (800 registers) for 
parameter learning and 20% (200 registers) for 
evaluation. The model was evaluated empirically 
using two scores: accuracy and a measure based on the 
Brier score (total square error). The Brier score is 
defined as: BS = Σn

i=1 (1 – Pi)2. Pi is the marginal 
posterior probability of the correct value of each node 
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given the evidence. The maximum Brier score is: 
BSMAX = Σn (1)2. A relative Brier score is defined as: 
RBS (in %) = {1 – (BS / BSMAX) } x 100. 

The results of the evaluation are shown in terms of 
the mean and the standard deviation for both scores. 
These results show the prediction and diagnosis 
capacity of the temporal model in a real process. Both 
scores are between 80 and 97% for all the set of tests, 
with better results when intermediate nodes are 
observed, and slightly better results for prediction 
compared to diagnosis. We consider that these 
differences have to do with the “distance” between 
assigned and unknown nodes and with the way that the 
temporal intervals were defined. We are encouraged 
by the fact that the model can produce a reasonable 
accuracy in times that are compatible with real time 
decision making.  

Table 2: Empirical evaluation results 

Parameter µ  σ  
Prediction 
% of RBS 
% of accuracy 

 
87 
84 

 
9.19 

14.98 
Diagnosis 
% of RBS 
% of accuracy 

 
84 
80 

 
8.09 

11.85 
Diagnosis and 

prediction 
% of RBS 
% of accuracy 

 
 

96 
95 

 
 

4.71 
8.59 

6 CONCLUSIONS 

The TEBN generates a formal and systematic 
structure used to model the temporal evolution of 
dynamics domains. TEBN is a hybrid model that 
combines a qualitative representation based on 
interval algebra with a quantitative representation 
based on a natural extension of Bayesian networks. 
Each event or variable occurrence is associated with 
a time interval. The definition of the numbers of 
time intervals for each variable is free (multiple 
granularity) and can be see as a trade off between 
the complexity and the accuracy needed for 
depicting the knowledge of the temporal domain.  

The model combines qualitative and quantitative 
causal-temporal reasoning mechanisms. The 
qualitative reasoning mechanism is based on the 
interval algebra and permits an early diagnosis. The 
early diagnosis gives a preliminary idea about of 
process state. The quantitative reasoning mechanism 
is based on the propagation of probabilities and 
gives the occurrence of events and disturbances with 
some probability values. 

The formalism satisfies the requirements of 
temporal knowledge acquisition, low computational 
cost and temporal expressiveness. The qualitative 
knowledge about temporal relations between 
temporal nodes is relatively easy to obtain from 
domain experts and is used to facilitate the 
acquisition of the quantitative parameters 
(conditional probabilities).  

Our future work will be focused on developing and 
integrating an intelligent support system (ISS) to aid 
the operation of human operators of thermal power 
plants. The ISS will be integrate by four modules: 
signal validation, supervisory system, diagnostic 
system, and planning systems. The ISS will be used to 
assist an operator in real-time assessment of plant 
disturbances and in this way contribute to the safe and 
economic operation of power plants.  
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