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Abstract: In this paper, a design technique is proposed for a disturbance feedforward compensation control to 
attenuate disturbance responses in an active magnetic bearing system, which is subject to base motion. To 
eliminate the sensitivity of model accuracy to disturbance responses, the proposed design technique is an 
experimental feedforward compensator, developed from an adaptive estimation, by means of the Multiple 
Filtered-x least mean square (MFXLMS) algorithm. The compensation control is applied to a 2-DOF active 
magnetic bearing system subject to base motion. The feasibility of the proposed technique is illustrated, and 
the results of an experimental demonstration are shown. 

1 INTRODUCTION 

Active magnetic bearing (AMB) systems are 
increasingly used in industrial applications. Unlike 
conventional bearings, AMB systems utilize 
magnetic fields to levitate and support a shaft in an 
air-gap within the bearing stator. When compared to 
conventional mechanical bearings, AMB offers the 
following unique advantages: non-contact, 
elimination of lubrication, low power loss, and 
controllability of bearing dynamic characteristics.  

Recently, interest has increased regarding the 
application of AMB systems to the sight 
stabilization systems mounted on moving vehicles. 
When a vehicle is undergoing angular motion, the 
mirror axis of sight rotates relative to the vehicle, to 
stabilize the line of sight. In such systems, the 
friction of mechanical bearings that support the 
mirror axis may cause tracking errors and, hence, 
may deteriorate the quality of an image obtained 
through electro-optical equipment. To eliminate the 
undesirable effects of friction, an AMB system is 
used instead of mechanical bearings. 

The main problem of a sight system levitated 
and stabilized by an AMB is the image scattering 
caused by base motion. One solution for reducing 

the effects of base motion is to expand the 
bandwidth of the control system by using feedback 
controls (Cole, 1998) such as PID control, state 
feedback control, ∞H control, and so on. A 
controller with a wider bandwidth, however, 
requires a higher sampling frequency, which often 
induces a mechanical resonance.  

An alternative approach for disturbance 
attenuation is a feedforward compensation of the 
base acceleration. The effectiveness of this approach 
has been demonstrated in the field of hard disk 
drives, which are also subject to base motion 
(Jinzenji, 2001). Suzuki (1998) developed 
feedforward compensation based on a dynamic 
model of the AMB system and showed that 
increases in the vibration rejection can be achieved. 
In practice, however, a dynamic model is not 
reliably accurate, because of many problems 
associated with it, such as the non-linearity of AMB, 
approximation errors of the discrete equivalent to a 
continuous transfer function, and sensor dynamics.  

Motivated to overcome these problems, in this 
work an alternative technique is proposed: a non-
model based acceleration feedforward compensation 
control developed from an adaptive estimation, by 
means of the multiple filtered-x least mean square 
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(MFXLMS) algorithm (Kuo, 1996; White, 1997). 
The performance and the effectiveness of the 
proposed technique are demonstrated on a 2-DOF 
AMB system subject to base motion. 

2 SYSTEM MODEL 

The test rig used in this paper is an AMB system of 
2-DOF shown in Fig. 1. Figure 2 is the photograph 
of the test rig. The test rig consists of two sets of 
AMB(left AMB: AMB-1, right AMB:AMB-2) and a 
circular shaft. Each end of the shaft is tied up by 
string wire such that the shaft moves only in the 
vertical plane. Each electromagnet is attached rigidly 
to each shaker(B&K-4808), which generates base 
motion resembling the vehicle motion. Two non-
contacting proximity displacement sensors(AEC-
5505) measure each air gap between the probe tip 
and the shaft surface, and the vertical acceleration of 
each electromagnet is measured by each 
accelerometer(Crossbow, CX04LP1Z).  
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Figure 1: Schematic diagram of test rig 

 
From the free-body diagram of the system in Fig. 

3, the equation of motion is given by 
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where m and J are the mass and the mass moment of 
inertia about the mass center of the shaft. , and y z
f  mean the air gap, the vertical acceleration and the 

actuating force, respectively. The subscripts 1 and 2 
denote the positions of the AMB-1 and the AMB-2, 
respectively. This definition is consistent hereafter. 
 

 
Figure 2: Photograph of test rig 
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Figure 3: Free-body diagram of the levitated axis 
 

The magnetic attractive force is approximately 
proportional to the square of the coil current and 
inversely proportional to the square of gap. However 
the nonlinearity of the magnetic attractive force 
against the coil current is decreased with the bias 
current added to the coil current. Consequently the 
linearized model is given by  

c d i cf K y K i= +  (2)                

where y  is the displacement stiffness and  is 
the current stiffness. 

K iK

 Since the time constant of the power amplifier-
magnet coil can be designed to be small enough by 
current feedback control, the control current ci  can 
be assumed to be proportional to the applied voltage, 

, to the amplifier, i.e. cu

c ai K uc=  (3)             

where  is the gain of the amplifier.  a
Substituting eqs. (2) and (3) into eq. (1) gives the 

linearized AMB system model as follows: 
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It is clear from eq.(4) that the system is open-
loop unstable, and the base acceleration and the 
gravitational force disturb the system. 

3 CONTROLLER DESIGN 

The system model in eq. (4) can be represented by 
the state space equation as  

 
ga fdBuAqq −−+=              (5) 

{ }1 2 1 2
Tq y y y y= , { } Tuuu 21=  

1 20 0 T
ad z z=⎡ ⎤⎣ ⎦ , 0 0 T
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Since this system has no integrator, the state 

feedback control with integral is applied to eliminate 
the steady state error due to the gravity force.  

ηikKqu −−=  (7)  

where K and ik  are the state feedback gain vectors, 
and η  is the integration of y1 and y2, i.e., 

. { }1 2
Ty yη =

The feedback gains in eq.(7) can be design from 
various kinds of schemes. The closed-loop system 
stabilized by eq. (7) can be represented in discrete 
time domain as  
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where  variables with the index k mean the sampled 
variables. 1( )iA q− , 1(ij )B q−  and  are the 
system polynomials. is the one step delay 
operator. 

1( )ijC q−
1−q

A general compensator for the system in eq.(8) is 
defined by 
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Applying the compensator, eq.(9), to the system, 
eq.(8), yields the compensated system of the form 
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Obviously, the perfect disturbance cancelling 
compensators , , , are derived from  *
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Since the compensators given in eq.(11) are 
designed from the system model, the compensation  
performance should be sensitive to the accuracy of 
the model. In practice, however, this kind of perfect 
cancelling based on the model is not expected 
because of the problems such as inaccuracy of 
dynamic model, approximation error of a discrete 
equivalent to a continuous transfer function, and 
sensor dynamics. Motivated by these problems, an 
explicit optimal feedforward compensator design 
technique is proposed in this paper. By this 
technique, the feedforward compensator design can 
be separated into two parts. 

1) Disturbance cancelling control for single 
harmonic base motion 

It is clear from eq. (11) that the response to a 
harmonic base motion of the frequency rω can be 
exactly nullified by choosing the polynomial 

1( )ijW q− as the first order polynomial satisfying the 
relation 

1 2 1 * , , 1,2
jw T jw Tr rij ij ij ijq e q e

W w w q W i j−

= =
⎡ ⎤= + = =⎣ ⎦   (12) 

where is the sampling interval. T
Nullifying disturbance response by using 

feedforward compensator means physically 
matching the impedance from the base motion to the 
air-gap with the impedances from the base motions 
to the air-gaps through the AMB dynamics and of 
the feedforward compensators, so that the 
disturbance can be perfectly cancelled. However 
compensator design from the model is not suitable 
for practical applications. To get rid of the problems 
associated with the inaccurate model, adaptation of 
the feedforward compensator is proposed. This 
technique is an explicit design through experiments 
by using a multiple-FXLMS algorithm. The FXLMS 
algorithm has been extensively used in the field of 
active noise control(Kuo, 1996; Widrow and Stearns, 
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1985)). Figure 4 shows an example of the multiple-
FXLMS algorithm to estimate the compensator 
polynomial . The parameters of the 
compensators are estimated from the following 
update equation. 
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Figure 4: MFLMS algorithm for estimating  )( 1
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where ijµ and ijη are the update gains, 1ˆ (i )A q−  and  
1ˆ (ij )B q− are the estimated system polynomials.  All 

the compensator polynomials are estimated 
simultaneously from eq. (13). 

By applying the MFXLMS algorithm meanwhile 
the exciters generate a stationary single harmonic 
base motion, the control parameters  and  in 
eq. (13) are estimated.  

1
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Since the base motion is single harmonic of 
frequency rω , the Fourier transforms 1( r )D jω  and 

2( r )D jω of  and  , respectively, would yield the 
relation 1 2 r
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number which represents the magnitude and phase 
relations between 1d  and 2 . The estimated 
polynomials are not unique but satisfy two 
independent relations in the following 
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Thus it is necessary to have at least two sets of 
polynomials estimated from the experiments where 

1  and 2  have the same frequency but have 
different relations. For example, if a set of 

polynomials is estimated from the experiment where 
1

d d
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eq.(14) as  
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Similarly, from another set of estimated 
polynomials obtained from another experiment 
where 2 1α α α= ≠ , 1β  and 2β  are obtained as 
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From eqns. (14)-(16), the compensator 
polynomials that perfectly cancel any stationary 
harmonic base disturbance of the specified 
frequency rω  can be determined as 
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Repeating the above experimental procedures by 
changing the base motion frequency, sets of perfect 
cancelling compensator polynomials for each 
frequency are obtained. 

2) Model fitting  in frequency domain 

From the sets of compensator parameters for each 
specified frequency, the FRF(frequency response 
function) of the disturbance cancelling feedforward 
compensators can be calculated. Based on this FRF, 
the compensators in eq. (9) are determined so as to 
minimize the cost function J  

( )
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n
ij ij k ij ij

q ek
J W q W q i
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where lm k( )λ ω
W q

is the frequency weighting and 
lm
* 1ˆ ( )− is the estimated compensator obtained in 

the first step and lmW q 1( )− is the compensator to be 
determined. To avoid unstable compensator, 

lm
1( )W q− can have the form of FIR(finite impulse 

response) filter. 

A DISTURBANCE COMPENSATION CONTROL FOR AN ACTIVE MAGNETIC BEARING SYSTEM BY A
MULTIPLE FXLMS ALGORITHM

267



 

4 EXPERIMENTS  

To verify the effectiveness of the proposed control 
scheme, experiments were conducted using the test 
apparatus shown in Fig. 2. All control algorithms 
were implemented on a digital computer equipped 
with a DSP(TI-DS-1104)) board. Throughout the 
experiments, the sampling frequency was kept at 
2000Hz. 

A pole placement feedback (FB) control was 
designed to have a closed-loop system with a 
damping ratio of 8.0=ς  and natural frequency of 

80n Hzω =  in consideration of the spectral 
characteristics of the base motion. The vehicle 
motion is characterized by a band-limited random 
process of bandwidth 15Hz-60Hz.  

To evaluate the convergence of the estimated 
compensator parameters and the corresponding 
disturbance rejection performance, a sequence of 
simple harmonic of frequency 30Hz was delivered to 
the shakers. The resultant base motion kept the 
relation 1 2( ) 1.023 ( )D j D jω ω= .  

Figs. 5 and 6 show the estimated compensator 
parameters of 11W and the corresponding air-gap 
responses, respectively. We confirmed that all 
estimated parameters converged to their final values 
after 50 s. These figures reveal that the air-gap 
responses were consequently reduced, as the 
estimated parameters converged to their final values. 
The aforementioned convergence property and the 
disturbance rejection performance exhibit the 
feasibility of the proposed compensation control by 
means of the MFXLMS algorithm.  

ˆ

As explained in the above, at least, one more set 
of compensator parameters is necessary to determine 
the unique compensator polynomials which cancel 
the disturbance responses perfectly at 30f Hz= .  
The MFXLMS algorithm was applied to obtain 
another set of compensator parameters under the 
different base motion profile kept the relation 

1 2
/ 2( ) 1.465 ( )jD j e D jπω ω= , 30f Hz= . Similar 

convergence and disturbance rejection properties to 
Figs. 6 and 7 were confirmed. 

From the two sets of the parameters obtained, the 
FRF of the disturbance neutralizing compensator at 

30f Hz=  was determined. The disturbance rejection 
performance of this compensator was evaluated 
under the base motion yielding the relation 

/ 4
1 2( ) 0.69 ( )jD j e Dπ jω ω−= , 30f Hz= . 

Fig. 7 shows the air-gap responses of the FB-
control by itself and the FB with the compensation 
control. Fig. 7 reveals that the compensation control 
can almost neutralize any base motion responses of 
frequency 30Hz. Surprisingly, it was found that the 
control effort is reduced when the compensation was 
employed. The air-gap responses that remained after 

employing the compensation came mainly from the 
inability of the shakers to produce a pure sinusoidal 
tone of motion. 

Repeating the experiment, while changing the 
harmonic base motion frequency, sets of disturbance 
neutralizing compensator parameters for each 
frequency were obtained. The FRF 11W  calculated 
from the estimated parameters is shown as an 
example in Fig. 8. Based on the FRF in Fig. 8, the 
best-fit compensator was determined to be the third-
order polynomials.  
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Figure 6: Air-gap responses during estimation by 

MFXLMS algorithm 

Figure 7: Compensated air gap responses 
 
To investigate the efficiency of the designed 

compensator, a comparison was made between the 
air-gap response with the compensation and without 
the compensation. During the control experiments, a 
sequence of band-limited random signals of 
bandwidth 15-60Hz was delivered to the shaker and 
the resultant base motion resembled that of the real 
vehicle.  

As shown in Fig. 9, the air-gap responses were 
greatly reduced by applying the feedforward 
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compensation. For y1, the standard deviations of the 
air-gap with compensation and without 
compensation were calculated to be mµσ 53.14= and 

mµ43.1 , respectively. For y2, the standard deviations 
of the air-gap with compensation and without 
compensation were calculated to be mµσ 13.13=  and 

mµ08.1 , respectively. The control voltages were 
slightly reduced after employing compensation. 
Figure 10 shows the spectra of the air-gap responses 
in Fig. 9. The disturbance attenuation ratio is 
approximately–20db within the frequency band of 
the base motion. 

Figure 8: Measured and fitted FRF of  11Ŵ
Figure 9: Air-gap responses w/ and w/o compensation 
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 Figure 10: Spectra of air-gap with and without 
compensation 

5 CONCLUSION 

In this work, an experimental feedforward 
compensator design technique, developed from an 
adaptive estimation by means of the Multiple 

Filtered-x least mean square (MFXLMS) algorithm 
has been proposed. The feasibility of the proposed 
technique has been verified by an experimental 
study, by using a 2-DOF active magnetic bearing 
system subject to base motion. The experimental 
results showed that the standard deviation of the 
compensated response was reduced to less than 10% 
of that by feedback control alone. 
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