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Abstract: This paper proposes to use constraint propagation on intervals to solve the mobile robot localization 
problem. The mobile robot is equipped with an exteroceptive sensor and dead-reckoning. These two sensors 
give imprecise data that are modelled by intervals. Our localization strategy is based on multi target tracking. 
To this aim, the data given by our two sensors are fused by constraint propagation. So, at the end of the 
localization process, we get a 3-D subpaving which is supposed to contain the robot’s position in a 
guaranteed way. The localization imprecision is naturally managed by our method. 

1 INTRODUCTION 

Localization is a preponderant problem in mobile 
robotics. Mobile robots have to be able to locate 
themselves in their environment in order to 
accomplish their mission. But the knowledge of the 
robot’s position is not sufficient. An estimation of 
the uncertainty and the imprecision of this position 
should be determined and taken into account in 
order to act in a robust way. In other words, the 
decisions about the robot’s behaviour should be 
made considering an uncertainty and an imprecision 
about the robot localization. The aim is to increase 
the reliability in operation, that is to say to assure the 
success of the mobile robot mission.  
 The two notions of uncertainty and imprecision 
are distinct ones and they must be clearly define. 
The imprecision results from unavoidable 
imperfections of the sensors and of the environment 
map, i.e. the imprecision represents the error 
associated to the measurement of a value. For 
example, “the weight of the object is between 1 and 
1.5 kg” is an imprecise proposition. On the other 
hand, the uncertainty represents the belief or the 
doubt we have on the existence or on the validity of 
a data. This uncertainty comes from the reliability of 
the observation made by the system: this observation 
can be uncertain or erroneous. In other words, the 
uncertainty denotes the truth of a proposition. For 
example, “John is perhaps in the kitchen” is an 
uncertain proposition. 

 The management of the uncertainty has been 
already done in previous work (Clérentin, 
2001)(Clérentin, 2002). The key tool used in this 
purpose is the Transferable Belief Model (Smets, 
1998), a non probabilistic variant of the Dempster-
Shafer theory. Indeed, this theory enables to easily 
treat uncertainty since it permits to attribute mass 
not only on single hypothesis, but also on union of 
hypothesis. We can thus express ignorance. So it has 
enabled us to manage and propagate an uncertainty 
from low level data (sensor data) in order to get a 
global uncertainty about the robot localization. We 
have also shown that this uncertainty is not 
correlated to the robot localization imprecision 
(Clérentin, 2003). That’s why we treat the 
imprecision independently from the uncertainty.  
 To compute imprecision, many localization 
methods use statistical state estimation techniques, 
for example the Extended Kalman Filter (Leonard, 
1991)(Chung, 2001). This method provides a point 
estimate associated with a confidence region which 
quantifies the imprecision estimation. This method is 
simple to use, but we must assume small variations 
(an important odometric error brings problems with 
the observation equation linearization) and noise 
statistical modelling (a priori hypothesis on the 
noises of the state vector and the measure vector, 
which must be Gaussian, white and independent 
from the initial state of the robot).  
 An attractive alternative to these methods is set-
membership estimation. The first set-membership 
methods introduced in robotics used ellipsoidal 
domains to enclose the robot’s position (Preciado, 
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1991)(Hanebeck, 1996). This choice was motivated 
by the availability and convenience of ellipsoidal 
algorithms.  
 The interval formalism was then used in set-
membership estimation (Meizel, 2002). This 
formalism allows a natural representation of sensors 
imprecision by the way of intervals. These are 
supposed to contain the true measurement in a 
guaranteed way. In (Meizel, 2002), the localization 
method is based on a set-inversion algorithm and 
only uses external sensors (ultrasonic telemeters). 
The work presented in this paper proposes a 
localization method also based on the interval 
analysis, but uses dead-reckoning information in 
addition to external sensors. These two types of data 
are fused by constraint propagation on intervals. 
 This paper is organized as follows. In a first part, 
we will recall the main principles of interval analysis 
and constraint propagation. Then we will deal with 
our robot configuration determination method based 
on interval analysis and multi target tracking. The 
paper will end with the presentation of the 
experimental results. 

2 CONSTRAINT PROPAGATION 

This method can be seen as a fusion method which 
can be applied on imprecise data represented by 
intervals. 
 In a first time, we will briefly recall the basic 
notions about interval analysis. Then we will detail 
the constraint propagation algorithm. 

2.1 Basic notions of interval analysis 

An interval [x] is a closed, bounded and connected 
set of real numbers. 

{ }+−+− ≤≤∈== xxxIRxxxx ],[][  

 The set of all intervals of IR is denoted by II IR. 
 All classical arithmetic operations can be 
performed on intervals (Moore, 1979)(Jaulin, 2001). 
 A box [S] is the Cartesian product of n intervals 
of II IR. 

2.2 Constraint propagation on 
intervals 

A constraint is a mathematical relation between 
several variables. For instance, let consider this 
constraints set: 
 x1 ∈ [1,4] 

 x2 ∈ [1,2] 
 x3 ∈ [5,7] 
 x3 = x1 + x2            (1) 
 This example can represent three sensors. Each 
sensor gives an imprecise measurement xi (i∈[1..3]) 
represented by an interval way [xi]. These three 
values are linked by the equation (1). Given this 
equation, some values are not consistent, i.e. they do 
not satisfy all the constraints. For example, x1 can 
not be equal to 1, else the constraint x3 = x1 + x2 ∈ 
[5,7] is not satisfied. This shows that it is possible to 
reduce the interval which contains x1 in order to 
eliminate inconsistent values.  
 So, a constraint satisfaction problem (CSP) is 
composed of: 
– A set of real-valued variables ({x1, x2, x3 } in our 

example) 
– A set of interval domains ({[x1], [x2], [x3]} in our 

example) 
– A set of numerical equations over the given set 

of variables (equation (1) in our example) 
 The problem is to find in the initial box 
[x1]×[x2]×[x3] all the consistent values with respect 
to all the constraints. 
A CSP is solved in two steps (Jaulin, 2001): 
– Decomposition of all the constraints in primitive 

constraints, i.e. one operator of function should 
be involved at each one 

– Contraction of the intervals by forward-
backward propagation 

 The forward-backward propagation algorithm is 
divided into two parts. In the forward propagation 
step, we calculate the equations of the system. In the 
backward propagation step, we calculate the inverse 
equations of the system. At each iteration of the 
forward and backward propagation, the computed 
interval domain has to be intersected with its 
previous value. These two steps are applied while 
the intervals are significantly contracted. The 
complexity of this propagation algorithm is 
polynomial (Jaulin, 1991). More precisions about 
this algorithm can be found in (Jaulin, 1991). 
 Applied on our example, this algorithm gives the 
following results: 
 In the forward propagation step, the interval x3 is 
reduced: 
x3 = x1 + x2 = [5,7] ∩ ([1,4]+[1,2]) = [5,7] ∩ [2,6] = 
[5,6]  
 Then, in the backward propagation step, we 
reduce x1 and x2 by inversing the constraint x3 = x1 + 
x2 : 
x1 = x3 – x2 = [1,4] ∩ ([5,6] – [1,2]) = [1,4] ∩ [3,5] = 
[3,4] 
x2 = x3 – x1 = [1,2] ∩ ([5,6] – [3,4]) = [1,2] ∩ [1,3] = 
[1,2] 
 Since the intervals have been significantly 
reduced, we repeat the algorithm: 
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x3 = x1 + x2 = [5,6] ∩ ([3,4]+[1,2]) = [5,6] ∩ [4,6] = 
[5,6]  
 Backward propagation step : 
x1 = x3 – x2 = [3,4] ∩ ([5,6] – [1,2]) = [3,4] ∩ [3,5] = 
[3,4] 
x2 = x3 – x1 = [1,2] ∩ ([5,6] – [3,4]) = [1,2] ∩ [1,3] = 
[1,2] 
 The intervals have not been reduced in 
comparison with the previous iteration, so the 
algorithm stops. The final intervals are: x1 ∈ [3,4], x2 
∈ [1,2], x3 ∈ [5,6]. 

3 LOCALIZATION BY 
CONSTRAINT PROPAGATION 

3.1 Overview of the problem 

We consider here the localization problem of a 
mobile robot in a 2D-mapped environment. Its 
configuration vector q=(x, y, θ) is defined by the 
coordinates of the robot together with its orientation 
in a world reference frame (Xe, Ye). 
 The robot is equipped with an exteroceptive 
sensor composed of a range finder system and the 
conical mirror SYCLOP (Conical System for 
Localization and Perception), an omnidirectional 
vision sensor used for several year in our laboratory 
(Clérentin, 2001).  

 

Figure 1: The perception system 
 
 The range finder system is an active vision 
sensor (Clérentin, 2001). It allows to obtain a robust 
omnidirectional range finding sensorial model. The 
interest of this system is on the one hand its low cost 
and on the other hand its robustness facing a high 
incidence angle. The SYCLOP system (Clérentin, 
2001) is composed of a conic mirror and a CCD 
camera. It enables us to get radial straight lines 
which characterize angles of every vertical object 
such as, for example, doors, corners, edges (Figure 
2). These association of two sensors can be 

assimilated of a depth sensor which can give a 2-D 
panoramic view of the environment. See figure 2 for 
an example of an experimental map. 

 

Figure 2: Principle of the omnidirectional sensor SYCLOP 
 
 Due to the imprecision of the sensor, the polar 
coordinates of the sensed primitives are expressed as 
two intervals [d] and [φ], cf. Figure 3.  

 

Figure 3: The polar coordinates of a sensed landmark Bi. 
 
 Besides, the robot is equipped with two 
odometers that can give an estimate about its 
position. 
 To localize itself, the robot has in its possession 
four world maps that describe the evolution 
environment: a map of segments  and three maps of 
high level primitives (a map of “corners”, of “edges” 
and of “other primitives” ). The interest of this kind 
of high level primitives is explained in (Clérentin, 
2001). 
 The problem is to find the robot configuration q 
using the exteroceptive and dead-reckoning 
information. The imprecision on the sensors 
measurements is modelled by intervals. 

3.2 Localization principle 

Our localization strategy is based on multi-target 
tracking (Clérentin, 2001). The tracked primitives 
are the high level primitives described before 
(“corner”, “edge”, etc.). When a track is initiated, 
the robot try to pursue it by matching a sensed 
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primitive with it. In our case, this multi-target 
tracking can be seen as a propagation of a matching 
between a theoretical primitive with sensorial 
primitives during the robot displacement. Its 
advantage is a lower computation time than classical 
matching methods: we match a sensed primitive 
only with the managed tracks at time t, not with all 
the theoretical primitives. 
 The algorithm is then the following and will be 
detailed in the next paragraphs. At each acquisition, 
the robot scans its environment with the 
exteroceptive sensor. It gets a map composed of 
segments. Then it classifies these segments into four 
classes of high level primitives: “corner”, “edge”, 
“wall” and “other” (Clérentin, 2001). With the help 
of the odometry information, we try to match these 
primitives with one of the managed tracks. In other 
words, we try to pursue the tracks. When all the 
sensed primitives have been analysed, we now 
consider the primitives that have not been matched 
with a track and we try to associate them with a 
theoretical primitive of the map in order to initiate a 
new track. 

3.3 Odometer modelization 

Odometry is the most widely used navigation 
method for mobile robot positioning. Odometry 
provides good short-term accuracy, is inexpensive, 
and allows very high sampling rates. The 
fundamental idea of odometry is the integration of 
incremental motion information over time. 
Unfortunately, this leads inevitably to an 
accumulation of errors. Despite this limitation, most 
researchers agree that odometry is an important part 
of a robot navigation system and that navigation 
tasks are simplified if odometric information is 
available. 
 The elementary displacement ∆d and elementary 
rotation ∆θ of the robot are given by the following 
equations: 

2
rRrlRld ωω +=∆       L

rRrlRl ωωθ −=∆  

where Rl and Rr are the radius of the left and right 
wheel, and ωl, ωr are the elementary rotations of the 
left and right wheel. 
 From these equations, we can deduce from the 
robot position at time n qn=(xn, yn, θn) the 
configuration at time n+1 qn+1=(xn+1, yn+1, θn+1): 

( )2cos1 θθ ∆+∆+=+ nnn dxx  (2) 

( )2sin1 θθ ∆+∆+=+ nnn dyy  (3) 

θθθ ∆+=+ nn 1  (4) 

 Some values involved in equations (2), (3) and 
(4) are imprecise: Rl, Rr, L, ωl, ωr are not precisely 
known. They are thus expressed by the way of 
intervals: [Rl], [Rr], [L], [ωl], [ωr]. So the robot 
configuration estimation at time n+1 given by the 
odometers is now represented by a 3-D subpaving 
[qn+1]=([xn+1], [yn+1], [θn+1]), where: 

[ ] [ ] [ ] [ ] [ ]
⎟
⎠
⎞

⎜
⎝
⎛ ∆+∆+=+ 2cos1

θθ nnn dxx  (5) 

[ ] [ ] [ ] [ ] [ ]
⎟
⎠
⎞

⎜
⎝
⎛ ∆+∆+=+ 2sin1

θθ nnn dyy  (6) 

[ ] [ ] [ ]θθθ ∆+=+ nn 1  (7) 

3.4 Initialisation of a new track 

The problem is here to initiate a new track, that is to 
say to match for the first time with a theoretical 
primitive a sensed primitive that has not been 
matched with a track. We will first argue in the case 
of a primitive of type “corner”, “edge” and “other”. 
We will then explain the case of a wall primitive. 
 Let ([d], [φ]) be the imprecise coordinates 
(expressed by intervals) of the junction point of a 
“corner”, “edge” or “other” primitive (see Figure 4 
for the case of a corner). Let [qn+1]=([xn+1], [yn+1], 
[θn+1]) be the robot configuration estimation given 
by the odometry. With this estimation, we can 
compute the Cartesian coordinates ([x], [y]) of the 
sensed landmark in the world reference frame (Xe, 
Ye): 

][])[]cos([][][ 11 ++ ++×= nn xdx θφ  (8) 

][])[]sin([][][ 11 ++ ++×= nn ydy θφ  (9) 
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Figure 4: A corner primitive case: the theoretical corner 
C1 is candidate for a matching. 

 
 With this result, the association method is quite 
simple: a new track is initialised if a theoretical 
landmark of the same type is included in the 
subpaving ([x], [y]). For example, on figure 4, the 
theoretical corner C1 is candidate for a matching 
since its Cartesian coordinates are included in ([x], 
[y]). 
 When a theoretical candidate whose coordinates 
are (xtheo, ytheo) is found, the resulting matching links 
the polar coordinates of the sensed landmark ([d], 
[φ]) with the robot position estimation [qn+1]=([xn+1], 
[yn+1], [θn+1]) through these two equations : 

[ ]( ) [ ]( )21
2

1][ theontheon yyxxd −+−= ++  (10) 

[ ]( )
[ ]( ) [ ]1

1

1arctan][ +
+

+ −−
−= n

ntheo

ntheo

xx
yy θφ  (11) 

 These two equations (10) and (11) implies two 
new constraints on the robot position estimation 
[qn+1]=([xn+1], [yn+1], [θn+1]) given by constraints (5), 
(6) and (7). So we have to solve a CSP by using the 
forward backward propagation algorithm explained 
on paragraph 2.2. Naturally, the constraints (10) and 
(11) reduce the size of the subpaving of the robot 
configuration [qn+1]. In other words, they decrease 
the localization imprecision. 
 This propagation can give a non-valid solution, 
that is to say there is no solution for the CSP because 
all the values are inconsistent. This means that the 
theoretical landmark that has been selected for the 
matching is not valid, so it is rejected. In this case, 
the algorithm is eventually restarted with an other 
theoretical landmark which is included on the 
subpaving ([x], [y]). If there is no other theoretical 
candidate, the sensed landmark is considered as an 
outlier. 

 The initialisation of “wall” track is performed as 
the same way, except that we have to consider two 
coordinates : the two wall endpoints.  
 This algorithm is performed on each sensed 
primitive which is not associated to any track. At 
each new initialisation, the localization imprecision, 
i.e. the robot configuration subpaving, is reduced 
thanks to the CSP solving.  
 So, at the end of this stage, we have several new 
tracks that are characterized by the subpaving ([x], 
[y]) which permitted to initialise them. Let call this 
subpaving the “track subpaving”. 

3.5 Propagation of a track 

In this part, we try to propagate the matchings 
initialised in the previous paragraph with the 
observations made during the robot’s displacement. 
In other words, we try to associate tracks with 
sensed landmarks.  
 Suppose we manage q tracks at time n. Each 
track is characterized by its “track subpaving” 
(expressed in the world reference frame). Let call 
this track suppaving ([xt], [yt]). Suppose the robot 
gets p observations at time n+1. As we have 
explained in paragraph 3.4, we are able to compute 
each observation localization subpaving ([x], [y]) in 
the world reference frame thanks to the equations (8) 
and (9). So, for each track, we have to search among 
the p sensed primitives the one that corresponds to 
the track. In other word, we have to match a track 
subpaving ([xt], [yt]) with an observation subpaving 
([x], [y]), cf. figure 5. The matching criterion we 
choose is based on the percentage of overlapping 
between these two kinds of subpaving ([xt], [yt]) and 
([x], [y]) in comparison with the size of the track 
subpaving. 

 

Figure 5: The track propagation principle in a corner 
primitive case. 

 
 So at this level, the problem is to match for each 
type of primitive the p observations obtained at the 
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acquisition n+1 with the q tracks. To reach this aim, 
we use the Transferable Belief Model (Smets, 1998) 
in the framework of extended open word (Royère, 
2002) because of the introduction in the frame of 
discernment of an element noted * which represents 
all the hypothesis which are not modelled. 
 For each track Qj (j ∈ [1..q]), we apply the 
following algorithm: 
– The frame of discernment Θ is composed of: 
– the p observations represented by the hypothesis 

Pi (i ∈ [1..p]). Pi means “the track Qj is matched 
with the observation Pi”) 

– and the element * which means “the track Qj 
cannot be matched with one of the p 
observations”.  

 So: Θ={P1, P2, …, *} 
– The matching criterion is the overlapping 

percentage between the subpaving of observation 
Pi and the track subpaving of Qj (Figure 6) 

– Considering the basic probability assignment 
(BPA) shown figure 6, we compute for each 
observation Pi: 

– mi(Pi) the mass associated with the proposition 
“Pi is matched with Qj”. 

– mi(¬Pi) the mass associated with the proposition 
“Pi is not matched with Qj”. 

– mi(Θ) the mass represented the ignorance 
concerning the observation Pi. 

 The BPA is shown on Figure 6. 

Overlapping percentage 

0

0,2

0,4

0,6

0,8

1

0 25 100 150 pe r c e nt a ge

m(Pi)

m(Pi U Pi)

m(Pi)

 

 

Figure 6: BPA of the matching criterion. 
 
– After the treatment of all the Pi observations, we 

have p triplets : 
 m1(P1)  m1(¬P1)   m1(Θ) 
 m2(P2)  m2(¬P2)   m2(Θ) 
 … 
 mp(Pp)  mp(¬Pp)   mp(Θ) 
 

We fuse these triplets using the disjunctive 
conjunctive operator built by Royère (Royère, 
2002). Indeed, this operator allows a natural 

conflict management, ideally adapted for our 
problem. In our case, the conflict comes from the 
existence of several potential candidates for the 
matching, that is to say some near sensed 
landmarks can correspond to a track. With this 
operator, the conflict is distributed on the union 
of the hypothesis which generate this conflict. 
For example, on figure 7, the subpavings P1 and 
P2 are candidate for a matching with the track 
subpaving ([xt], [yt]). So m1(P1) is high (the 
expert concerning P1 says that P1 can be match 
with ([xt], [yt])) and m2(P2) is high too. If the 
fusion is performed with the classical Dempster 
operator, these two high values produce a high 
conflict. But, with the Royère operator, the 
conflict generated by m1(P1) and m2(P2) is 
rejected on m12(P1 ∪ P2). This means that both 
P1 and P2 are candidate for the matching. 

 

Figure 7: An example of two landmark subpavings that 
generate some conflict. 

 
– So, after the fusion of the p triplets with the 

Royere operator, we get a mass on all single 
hypothesis mmatch(Pi), on all the unions of 
hypothesis mmatch(Pi ∪ Pj…∪ Pk), on the star 
hypothesis mmatch(*) and on the ignorance 
mmatch(Θ). 

– The final decision is the hypothesis which has 
the maximal pignistic probability (Smets, 1998). 
If it is the * hypothesis, no matching is achieved. 
This case corresponds to temporary or definitive 
disappearance of the track, due to a temporary or 
complete occultation of the primitive.  

 
Once a matching is achieved, the method is like the 
initialisation step (paragraph 3.4): the robot position 
and the track, that is to say a theoretical landmark, 
are linked by the polar coordinates ([d], [φ]) of the 
sensed landmark. Therefore, these considerations 
imply the same two constraints given by the 
equations (10) and (11) on the robot localization 
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estimation given by equations (5), (6) and (7). These 
equations form a CSP we solve by using the forward 
backward propagation algorithm explained on 
paragraph 2.2. 
 When this propagation has no solution, the 
matching is cancelled and the relative observation 
could be used to an other matching, for pursuit or for 
initialisation.  

3.6 Summary of the localization 
method 

Let resume our localization paradigm. When the 
robot has done a sensorial acquisition, the multi 
target tracking algorithm explained on paragraph 3.5 
is performed for each existing tracks. Then, all the 
sensed primitives that have not been matched with 
any tracks are used to initialise new tracks, as 
explained in paragraph 3.4. 

4 EXPERIMENTAL RESULTS 

In this part, we present the experimental results we 
obtained after several acquisitions in an indoor 
environment (the end of a corridor shown figure 8). 
The mobile robot execute two paths composed of 
forty-six acquisitions made every 30 cm and 
computed in a Pentium PC located on the robot. 

    

Figure 8: The experimental environment. 
 
 On figure 9, we show the 3D localisation 
subpavings of the robot obtained using only the 
odometric information. We can note the classical 
phenomena of cumulative error: the size of the 
subpavings increases unceasingly. This shows the 
need to add to dead reckoning the measurements 
given by an other sensor. 

 

Figure 9: Localization results using only odometry. 
 
An example of sensed map obtained with our 
omnidirectional sensor with associates the SYCLOP 
sensor and a telemeter is shown on figure 10. The 
crosses represent the depth points given by the 
telemeter. The red lines on the centre of the figure 
are the radial straight lines issued of the treatment of 
the SYCLOP image. Finally, a segmentation stage 
gives us a set of segments (the black ones on figure 
10). 
 The experimental results using dead reckoning 
and the depth sensor are shown on figure 11. The 
true localizations are represented by the black 
points. Firstly, we note a relatively precise 
localization: the localization subpavings have a 
small size (lower than 20 cm in X and Y, and 11 
degrees in orientation). The error is weak (10 cm in 
position and one degree in orientation). 

     

Figure 10: the perception system and an example of high 
level primitive map. 
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Figure 11: two dimensions localization results. 

5 CONCLUSION 

We have presented in this article a localization 
method based on constraint propagation on intervals. 
Indeed, the localization problem can be modelled as 
a constraint satisfaction problem (CSP). In our case, 
the imprecise information used to localize the robot 
come from two sensors: two odometers and an 
exteroceptive sensor. These two sensors give 
measurements which are linked by some constraints. 
These constraints induce a reduction of the 
subpaving which represents the robot localization.  
 Another advantage of this method is its ability to 
treat naturally and easily imprecise data: these data 
are represented by intervals. So, the localization 
imprecision quantification is intrinsically managed 
by our algorithm. 
 The localization strategy is based on multi target 
tracking. This strategy, which can be seen in our 
case as a propagation of a matching during the 
robot’s displacement, is less complex than classical 
methods. Besides, our matching method, which is 
based on the use of the TBM, gives us an uncertainty 
value about each matching done. This value can 
allow to estimate an uncertainty about each track, 
and thus manage the problem of track cancel: if a 
track is to uncertain, it will be cancelled. This track 
uncertainty management is one of the main future 
perspectives that will concern this work. 
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