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Abstract: The goal of this paper is to build a stereo sensor to be used as a 3D measurement tool with direct application 
in automotive industry. The distance between the object to be measured and the stereo sensor is between 
200 mm and 300 mm. This paper presents the solutions developed in order to produce, calibrate and verify a 
stereo sensor used to measure 3D coordinates with an accuracy of 0.1 mm. The measurement area is defined 
by a square with a side of 100 mm. The contribution of this paper to the extant literature is twofold.  First, it 
presents a new method to compute the coefficient of the radial distortion. Second, it develops an image-
processing algorithm, in order to minimize the errors that occur from the non-correspondence problem. The 
most important issues that need to be addressed are the following: defining a camera model in order to best 
simulate a real camera, and identifying the same point with both cameras of the stereo sensor 
(correspondence problem), in order to reduce the measurement errors. 

1 INTRODUCTION 

The camera calibration problem has been 
extensively studied over the past 25 years. The 
extant literature addressing this topic can be divided 
into two categories: the calibration of zooming and 
rotating cameras (Agapino, 2001) and the calibration 
of fixed cameras (Armangue, 2000). The calibration 
developed and presented in this paper belongs to the 
latter category.  

Armangue, Salvi and Balle (2000) is a very good 
survey of existing calibration methods of fixed 
cameras.  According to this study, there are four 
calibration methods: the method of Hall (Hall, 
1982), the method of Faugeras-Toscani (Faugeras, 
1986), the method of Tsai (Tsai, 1987) and the 
method of Weng (Weng, 1992). We used the method 
of Tsai and the method of Faugeras-Toscani, as main 
references in our work.  

The remainder of this paper is organized as 
follows.  Section 2 presents the camera model we 
consider. Section 3 describes the image 
segmentation alghorithm.  We present the calibration 

procedure that we developed in Section 4, and the 
measurement procedure in Section 5.  The analysis 
of the errors obtained with our sensor is presented in 
Section 6, while Section 7 briefly describes two 
possible industrial applications of the stereo sensor.  
Section 8 concludes.  

2 CAMERA MODEL 

Our goal is to find that set of parameters which best 
simulates the behavior of a real camera. Generally, 
the camera parameters are divided in two categories: 
extrinsic parameters and intrinsic parameters 
(Faugeras, 1993).  

There are six extrinsic camera parameters. We 
denote them tx, ty, tz, α, β, γ. The first three give the 
position and the last three the orientation of the 
camera frame with respect to a reference frame or a 
world frame. In our case we call this reference frame 
the stereo sensor frame. The position of the stereo 
sensor frame is in the middle of the calibration plate 
and the orientation is as one can see in Figure 1. 
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Figure 1: Stereo sensor frames 
 
More details about the calibration plate are 

provided in Section 4. Axes x and y are in the same 
plane with the calibration plate and axis z is 
orthogonal to this plane. 

Things become a little more complicated with 
respect to camera intrinsic parameters. The simplest 
model is the pinhole model. This is a distortion-free 
model, which includes four independent parameters: 
sxf, syf, Cx, and Cy, where we denote the focal length 
by f, the scale factors by sx and sy and the center of 
the image (the intersection of the optical axis with 
the CCD chip plane) by Cx and Cy. A better 
simulation of a real camera is given by a model 
which includes the radial distortion. We denote the 
coefficient of the radial distortion by k. There are 
camera models which also include other types of 
distortions, such as decentering and thin prism 
distortion (Weng, 1992). Theoretically, we should 
also consider the skew factor (Faugeras, 1993). The 
skew factor is a function of the angle between the 
axes defined by two adjacent sides of the CCD chip. 
Normally, this angle is 90 degrees, and in this case 
the skew factor will have no influence on the 
perspective matrix. Other intrinsic parameters can be 
introduced to model the fact that the optical axis is 
not orthogonal to the CCD chip. This is one of the 
next problems to address in our future work.  

In order to reach the required accuracy (see 
abstract), we consider a model that includes the four 
standard intrinsic parameters sxf, syf, Cx, and Cy and 
the coefficient of the radial distortion k.  Because of 
technological progresses in manufacturing lenses 
and CCD chips, the effects of distortions, other than 
the radial distortion, and that of the skew factor are 
very small. 

We present below a short description of the 
mathematical model considered for the radial lens 
distortion. There are two types of radial distortion, 
one positive, called pincushion distortion, and one 
negative, called barrel distortion (Landsberg, 1958). 

The lenses we have used are affected by barrel 
distortion.  

We consider two points, Pu which is the ideal 
point, undistorted, and Pd, which is the real point, 
distorted. The coordinates of these points are Xu, Yu 
and Xd, Yd, respectively. We approximate the 
distortion by the following relations  

 
( )dddu RfXXX ⋅+= ,      (1) 

( )dddu RfYYY ⋅+= ,      (2) 
 
where Rd is defined by the following relation 

 

( ) ( )( )2122
ddd YXR += .      (3) 

 
According to the literature for this radial 

distortion, only the second order term has a 
significant value (Weng, 1992). 

We can then approximate the function f by the 
following expression 

 
( ) 2

dd RkRf ⋅= ,        (4) 
 

where k is the coefficient of radial distortion, as 
described at the beginning of this section. Using 
Eqs. (1) – (4), we obtain, after some mathematical 
computations  

 

21
1

d
du Rk

XX
⋅+

⋅= ,      (5) 

21
1

d

du Rk
YY

⋅+
⋅= .       (6) 

 
We use these two relations in our further 

calculations to model the radial distortion. 
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3 IMAGE PROCESSING 
ALGORITHM 

The first problem was to decide what type of marks 
one can use in order to identify them in the pictures 
obtained from the CCD cameras. One solution was 
to use crosses. The other was to use circles. We 
decided to use circles and the reasons why we did so 
are presented further in the section. 

The accuracy of the information obtained from 
the marks is directly dependent to the accuracy of 
the detected edge points. If we take a circle having a 
radius r, the total length of the edges is given by  

 
rLCircle *2π= .        (7) 

 
For a cross, with the dimensions 2r horizontal and 2r 
vertical, the total length of the edges is given by  

 
rLCross *8= .        (8) 

 
Based on these two relations, we show that the 

number of the edge points for a circle is smaller than 
the number of the edge points for the corresponding 
cross. Thus, we have to detect more edge points in 
the case when a cross is used than in the case of a 
circle. Each one of the edge points is detected with 
an error and affects the information used in our 
further calculations. Therefore, more edge points 
means more errors and this ultimately will have a 
higher effect on the amount of useful information.  

The next problem was to find a segmentation 
method, by which to decide which pixels belong to 
the circle and which belong to the background. 
Initially, we worked at the pixel level using 
segmentation methods based on dynamic thresholds 

(Parker, 1997, and Gui, 1999). The results are better 
than when we use only the functions from the image 
processing software. However, an alternative 
method, which consists in working at the sub-pixel 
level, can further improve these results. We explain 
further in more details why we chose this method, 
and present the algorithm we developed.  

Consider the following example based on a real 
situation: a simple plate, which is half white and half 
black, as in Figure 2.a1. If we take the image of this 
plate through a camera, and store it on the chip, it 
will be a little distorted, as one can see in Figure 
2.a4. We consider that the transfer from the chip 
image to the computer image takes place without 
errors. Therefore, the situation presented in Figure 
2.a4 is also valid at the pixel level. 

In most cases, the border between an object and 
the background in the pixel image should be situated 
on the surface of one pixel, and not at the border 
between two pixels. Due to physical considerations, 
we cannot have two different levels of electricity in 
one cell of the chip. Furthermore, the corresponding 
pixel cannot have two grey levels. We develop a 
mathematical algorithm, which determines a sub-
pixel value associated with the location of the border 
between two grey levels. 

Our goal is to reach an accuracy of a tenth of a 
pixel. To obtain that level of precision, we have to 
explore each “circle” in the following way: we start 
from the weight point of the “circle” with lines to 
the edges of the “circle”. One thing to be mentioned 
here, the term “circle” denotes the calibration mark, 
which by projection to the image becomes an ellipse. 
There are two problems that must be solved. The 
first one is to decide how many lines to use. The 
second one is to compute the grey level in certain 
sub-pixel positions situated on this line.  

Figure 2: Details concerning the sub-pixel resolution 
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The number of lines to use is determined by the 
value of the angle between two consecutive lines. 
The length of the circle is computed using the 
following equation 

 
pRLC ∆⋅⋅= π2 ,       (9) 

 
where ∆p is the length associated with one side of a 
square pixel. The angle between two consecutive 
exploration lines will be computed using the 
following relation 

 

[grad
nR ⋅⋅

=∆
π

α 180 ].      (10) 

 
where n is the number of parts in which we want to 
divide a pixel. In our case, we take n equal to 10 and 
the maximum value for the radius, R, equal to 20. 
This way, we obtain a value of 0.28 for ∆α, 
suggesting that we use approximately 1285 
exploration lines.  

For each of these lines we analyze a part of it 
with a length equal to the length of 5 pixels. The 
middle of this part is situated at a distance equal to 
the circle radius R.  Between the Cartesian 
coordinates of one point situated in this part of the 
line and the polar coordinates of the same point, the 
following two relations can be written 

 
( ) αcos⋅++= dRCx x ,     (11) 
( ) αsin⋅++= dRCy y ,     (12) 

 
where d takes values between –2.5 and +2.5. The 
difference between two consecutive values of d is 
0.1. Cx and Cy are the coordinates of the “circle” 
weight point. As indicated before, our goal is to have 
the grey level of the points situated at any location d 
on the exploration line. Using Eqs. (11) and (12), we 
compute the corresponding coordinates (x, y) for 
each of the 51 values of d.  The problem now 
becomes that these coordinates (x, y) have float 
values and we only know the grey level for those 
with integer values.  

Next, we present a solution for computing the 
grey level of a point whose coordinates take float 
values. In Figure 2.b, we show a square formed by 
nine pixels. 

The values taken by x any y are positive integers. 
They represent the location of the pixel in the image. 
With small circles we have denoted the grey levels 
of the pixels, and placed them in the middle of their 
corresponding pixels. We are next interested in 
computing the grey level of the point situated at the 
location (x1,y1), as one can see in Figure 2b. The 

following notations are made in order to simplify the 
calculations  

 
xxx −=∆ 1 ,        (13) 
yyy −=∆ 1 .        (14) 

 
Next, the grey level of the point situated at 

location (x1, y1) can be calculated using the relation 
 
( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( yxyxg
yxyxg

yxyxg
yxyxgyxg

∆−⋅∆⋅++
+∆⋅∆⋅+++

+∆⋅∆−⋅++
+∆−⋅

)

∆−⋅=

1,1
1,1

11,
11,, 11

.  (15) 

 
Following the algorithm described before, we 

generate 51 pairs (di, g(di)), where di takes values 
between –2.5 and +2.5, and i takes values between 0 
and 50.  

In order to simplify the mathematical 
calculations and avoid working with float numbers, 
we define a variable D as follows: 

 
10 25D d= ⋅ − .        (16) 

 
where D takes integer values between –25 and +25. 
Using the relation 

 

( ) ( ) ( )25 ,
10

DG D g g d g x y−⎛ ⎞= = =⎜ ⎟
⎝ ⎠

  (17) 

 
one can next compute the function G(D).  

So far, we managed to divide an interval of five 
pixels in fifty sub-pixels intervals, and to compute 
for each sub-pixel position the corresponding grey 
level.  

Next, our approach is to find a mathematical 
relation, which best approximates the function G(D). 
The following relation defines this function: 

  
( ) ( )( )0 0arctanG DG D G K K D D= + ⋅ ⋅ − . (18) 

 
Our final goal is to compute D0. Rewriting the 

Eq. 18 as follows  
 

( ), 0 0, , , 0
i iD G D GF D G K K = ,     (19) 

 
where Di and Gi are those variables calculated in the 
previous steps, we will obtain an over determined 
system of nonlinear equations. To solve this system, 
we first use the Newton algorithm, to make the 
system linear, and then least square methods 
(Manusar, 1981, Naslau, 1999). 
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Figure 4: The stereo sensor and the calibration device 
 

4 CALIBRATION OF THE 
STEREO SENSOR 

In this section, we show the relation between the 3D 
coordinates and the 2D pixel coordinates of a 
calibration point and the camera parameters. We 
start from the equations 

 

( ) ( ) z
xf

s
CX

s
CY

s
CX

k x

xp

y

yp

x

xp

=
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+

−
+

2

2

2

2

1

1 ,    (20) 

( ) ( ) z
yf

s
CY

s
CY

s
CX

k y

yp

y

yp

x

xp

=
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+

−
+ 2

2

2

2

1

1 ,   (21) 

 
where (Xp, Yp) are the pixel coordinates and (x, y, z) 
are the 3D coordinates of a calibration point with 
respect to the camera frame. The following notations 
are made 

 
fsp xx = ,         (22) 
fsp yy = ,         (23) 

2kfd = .         (24) 
 
Using these notations, Eqs. (20) and (21) become 
 

( ) ( )
01)( 2

2

2

2

=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
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+

−
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p
CY

p
CX
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x
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xxp (25) 

( ) ( )
01)( 2

2

2

2
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⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
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⎝

⎛ −
+

−
+−− y

p
CY

p
CX

dpzCY
y

yp

x

xp
yYp (26) 

 

Between the 3D coordinates of a calibration 
point with respect to the camera frame and the 3D 
coordinates of the same point, but with respect to the 
stereo sensor frame, one can write the relation 

 
[ ] [ ]TSSS

Cam
SS

T zyxTzyx 11 ⋅= ,  (27) 
 

where (xs, ys, zs) are the 3D coordinates of the 
calibration point with respect to the stereo sensor 
frame. The transformation from the camera frame to 
the stereo sensor frame is a function of tx, ty, tz, α, β 
and γ (Paul, 1981). We denote this function by 28. 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−+
+−

=

1000
coscossincossin

sincoscossinsincoscossinsinsinsinsin
sinsincossincoscossinsinsincoscoscos

z

y

x

Cam
ss t

t
t

T
αβαββ

αγαβγαγαβγβγ
αγαβγαγαβγβγ

  
Using Eqs. (27) and (28), we can rewrite Eqs. 

(25) and (26) in the following way 
 

0),,,,,,,,,(,,, =dCCppttF yxyxzx
x

zyxYX SSSPp
γβα , (29) 

0),,,,,,,,,(,,, =dCCppttF yxyxzy
y

zyxYX SSSPp
γβα . (30) 

 
The last two equations are non-linear. For each 

calibration point, we obtain one pair of non-linear 
equations. Using N (N>10) calibration points we 
obtain an over-determinate system of non-linear 
equations. To solve this system, we first use the 
Newton algorithm, to make the system linear, and 
then least square methods (Manusar, 1981, Naslau, 
1999). 

Figure 4 shows the calibration plate. It was made 
out of glass, in order to reduce possible 
modifications due to the temperature variation. The 
accuracy of the circle positions is between –0.01mm 
and +0.01mm.  
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One can also see, in Figure 4, that the calibration 
plate is fixed on a special device. This device can 
provide movements in three orthogonal directions 
(x,y,z) with an accuracy situated between -0.01mm 
and +0.01mm. The alignment between the frame and 
the calibration plate frame is done mechanically, and 
is adjusted and controlled using Leica 3D 
measurement system with an accuracy of 0.01mm. 
Finally, the total accuracy of the position of the 
circles is between -0.025mm and +0.025mm.  

5 MEASUREMENT PROCEDURE 

Our goal is to measure the 3D coordinates of a point 
with respect to the stereo sensor frame. We consider 
a point P with coordinates xS, yS, zS with respect to 
the stereo sensor frame. This point will have the 
coordinates xR, yR, zR with respect to the camera right 
frame and the coordinates xL, yL, zL with respect to 
the camera left frame. With these notations one can 
write the next relation: 

 

⎥
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⎥
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⎦
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⎡
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⎥
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⎥
⎥
⎥

⎦

⎤
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⎢
⎢

⎣

⎡

⋅

0
0
0
0

11
R

R

R

SS
R

L

L

L

SS
L z

y
x

T
z
y
x

T .    (31) 

 
where  represents the transformation from the 
stereo frame to the camera left frame, and  is the 
transformation from the stereo sensor frame to the 
camera right frame. 

TSS
L

TSS
R

From the two images made with the stereo 
sensor we find the pixel coordinates of the point P. 
We denote these coordinates (XL, YL) and (XR, YR), 
for camera left and right, respectively. Between the 
3D coordinates and the pixel coordinates of the point 
P one can write the relations 
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y

yp

x

xpL

xz
p

CX

p
CY

p
CX

d

=⋅
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+

−
+ 2

2

2

2

1

1 ,(32) 

( ) ( ) LLL
y

L
yL

y

yp

x

xpL

yz
p

CY

p
CY

p
CX

d

=⋅
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+

−
+ 2

2

2

2

1

1 ,(33) 

( ) ( ) RRR
x

R
xR

y

yp

x

xpR

xz
p

CX

p
CY

p
CX

d

=⋅
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+

−
+ 2

2

2

2

1

1 ,(34) 

( ) ( ) RRR
y

R
yR

y

yp

x

xpR

yz
p

CY

p
CY

p
CX

d

=⋅
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+

−
+

2

2

2

2

1

1 ,(35) 

 
where  are the intrinsic parameters 
for the left camera and  are the 
intrinsic parameters for the right one. The values of 
these parameters are known because they were 
computed in the calibration procedure. We solve 
Eqs. (31) – (35), and compute x

LL
y

L
x

L
y

L
x dCCpp ,,,,

RR
y

R
x

R
y

R
x dCCpp ,,,,

S, yS, and zS,, which 
in fact is our goal.  

For measuring purposes, we use the same device 
as in the calibration procedure (see Figure 4). We 
move the plate in different positions, and we 
measure with the stereo sensor the 3D coordinates of 
the points from the calibration plate. The big 
advantage of this device is that we can control very 
precisely the x, y, and z movements of the plate 
(0.01 mm). This way, the accuracy of measurements 
made with the calibrated stereo sensor can be 
verified.  

6 ANALYSIS OF THE 
MESUREMENT RESULTS 

According to Tsai (1987) and Weng (1992), there 
are three ways to analyze the accuracy of the camera 
calibration process. We use the first method from 
their classification, which consists in analyzing the 
accuracy of 3D measurements though stereo 
triangulation.  

 We present three plots with the errors of the 
measurement results. They present the errors ∆x, ∆y, 
and ∆z, obtained for each coordinate x, y and z.  

We have measured 25 points situated in a plane. 
In our plots, the coordinates x and y indicate the 
position of the measured point in this plane, and the 
coordinate z indicates step by step the four errors 
presented before.  

Figure 5.a shows the distribution of errors for the 
x coordinate. The errors are between -19µm and 
+24µm. Similarly, Figure 5.b shows the distribution 
of errors for the y coordinate. These errors take 
values between -16µm and +19µm. The errors for z 
coordinate, which are between -78µm and +91µm, 
are presented in Figure 5.c. Having obtained these 
errors, we have reached our goal of building a stereo 
sensor with the features described in the abstract.  
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Figure 5: The error distribution for the measurement results 
 

7 INDUSTRIAL APPLICATIONS 

In industrial applications, a stereo sensor can be used 
in two configurations: as a fixed sensor or, as a 
mobile sensor mounted on the robot hand.  

The first configuration can be employed in 
measuring the angle between the axles of a vehicle 
and the plane in which the wheels are rotating. The 
accuracy in such applications has to be very high. 
The solution developed in this paper, using a stereo 
sensor, provides this high accuracy.  It can replace 
the current solution, which uses very expensive laser 
devices.  

The second configuration, mobile sensor, is 
found useful in automatic processes, such as robotic 
hands mounting of windows for passenger cars. 
Here as well, this solution with a stereo sensor 
mounted on the robot hand can replace, with better 
results, the current solution. It needs only two 
cameras instead of four or eight, which are needed 
for the multi-camera method, which is presently 
used.  

8 CONCLUSIONS 

One of the main conclusions of this paper is that in 
order to obtain high accuracy and stable 
measurement results with a stereo sensor, it is 
necessary to include the radial distortion as a 
parameter in the camera model, and to make the 
image processing at sub-pixel level.  We present in 
details the reasons why we need a sub-pixel 
approach. Furthermore, we develop an algorithm, 
which detects the position of the edge, by using a 
mathematical function to approximate the grey level 
for those points situated in the edge vicinity. The 
next step in the future research is to mathematically 
model the fact that the optical axis is not orthogonal 
to the CCD chip. 
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