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Abstract: Gasification is a well-known technology that allows for a combustible gas to be obtained from a 
carbonaceous fuel by a partial oxidation process (POX). The resulting gas (synthesis gas or syngas) can be 
used either as a fuel or as feedstock for chemical production. Recently, gasification has also received a great 
deal of attention concerning power production possibilities through IGCC process (Integrated Gasification 
Combined Cycle), which is currently the most environmentally friendly and efficient method for the 
production of electricity. Gasification allows for low grade fuels, or dirty fuels, to be used in an 
environmental acceptable way. Amongst these fuels are wastes from the petrochemical and other industries, 
which may vary in composition from shipment to shipment, and from lot to lot. If operating conditions are 
kept constant, this could result in lost of efficiency. This paper presents an application of Genetic 
Algorithms to optimise the operating parameters of a gasifier processing a given fuel. Two different 
objective functions are used: one to be used if hydrogen production is the main goal of gasification; other to 
be used when power/heat production is the aim of the process. Results show that the optimisation method 
developed is fast and simple enough to be used for on-line adjustment of the gasification operating 
parameters, for each fuel composition and gasification aim, thus improving the overall performance of the 
industrial process. 

1 INTRODUCTION 

This paper presents an application of Genetic 
Algorithms to optimize the operating parameters of a 
gasifier processing a given fuel. 

Gasification is a well-known technology that 
allows for a combustible gas to be obtained from a 
carbonaceous fuel by a partial oxidation process 
(POX). The resulting gas (synthesis gas or syngas) 
can be used either as a fuel or as feedstock for 
chemical production. The major constituents of 
syngas are CO, H2, CO2 and H2O. From these, only 
H2 and CO are combustible and only H2 is 
interesting as chemical feedstock. 

Formally defined, gasification is the conversion 
of solid and liquid materials into a gas through 
reaction with oxygen, steam and carbon dioxide, or a 
mixture of these gases, at a temperature exceeding 
700 ºC. In industrial applications, a solid or liquid 
fuel is conveyed to a vessel (the gasifier) and mixed 
with oxygen and steam. The CO2 and H2O resulting 
from the combustion of a fraction of the fuel will 
also become an agent of gasification for the 
remaining fuel. There will exist some N2 present in 
the gasifier, because the oxygen stream is not 100% 
pure and also, possibly, because N2 can be used as a 
conveying gas for the pneumatic transportation of 
the fuel. Some heat can be recovered from the 
gasification chamber (gasification is an overall 
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exothermic reaction, which will generate heat) to 
produce steam. 

Traditionally, gasification has been used as a 
means of producing heating gas for domestic and 
industrial needs (town gas) and as a source of 
hydrogen for the heavy chemical industry. Recently, 
gasification has received a great deal of attention 
concerning power production possibilities, since it is 
the core of the IGCC process (Integrated 
Gasification Combined Cycle). IGCC is the most 
environmentally friendly method for the production 
of electricity since it allows for all the pollutants to 
be removed in a pre-combustion stage, at the gas 
cleanup (Haupt et al., 2000). It also permits any fuel 
to be used in a combined cycle, thus greatly 
increasing electricity production efficiency. 

One of the major advantages of gasification is 
that it allows for less noble fuels, or dirty fuels, to be 
used for the above-mentioned purposes. Amongst 
these are wastes from the petrochemical and other 
industries. In the latter case, each shipment of wastes 
supplied to be gasified usually presents a different 
composition. This is quite understandable since the 
waste supplier industry will deal with different 
feedstocks of prime matter, or will produce different 
products in a given time span. So, naturally, the 
waste produced will present a different composition 
from case to case. 

In the present work we determine the optimum 
operational parameters for the gasification of a given 
fuel, as characterized by its elementary composition 
and Lower Heating Value (LHV). The parameters to 
be optimized are the Operating Pressure, Oxygen to 
Fuel ratio, Steam to Fuel ratio, and Heat Recovered. 

Two different objective functions are used, since 
the goals to be reached are different if the 
gasification process is intended to produce an 
hydrogen rich gas for chemical feedstock, or a 
combustible gas for power/heat production. In the 
former case, the syngas’ hydrogen percentage will 
be maximized, while in the latter the gasification 
Cold Gas Efficiency is the parameter to be 
maximized (Cold Gas Efficiency is the quotient 
between the heating capacity of the syngas and the 
original fuel heating capacity. The heating capacity 
is the product of the lower heating value and the 
mass flow). Thermal efficiency (defined as the 
quotient between: 1) the sum of the heat recovered 
in the process and the heating capacity of the syngas; 
and 2) the fuel heating capacity), which is a 
parameter closely related to Cold Gas Efficiency, is 
also analyzed. 

The optimization method developed could be 
used for on-line adjustment of the gasification 
operating parameters for different fuel compositions 
and gas’ final purpose, thus improving overall 
performance of the industrial process. 

Genetic Algorithms (GAs) have been used to 
determine optimal operational parameters for several 
industrial processes and other practical applications 
(for example, Dickinson and Bradshaw, 1995; 
Wright, 1996; Huang and Lam, 1997). They are 
particularly suitable for problems that are either 
multimodal (i.e., present several local extremes), or 
discontinuous, since in these cases conventional 
optimization methods based on calculus, like 
gradient methods, tend to fail. GAs are also effective 
in smother problems that could be solved using more 
traditional methods, what makes them very flexible 
and adaptable to a variety of solution spaces. In the 
present work, it is suspected that the objective 
functions are in fact multimodal, what lead to the 
choice of GAs as the search procedure. 

The structure of the paper is the following: in 
section 2 the gasification modeling is briefly 
described, section 3 verses on the search and 
optimization process using GAs, section 4 presents 
the main results of this work, and section 5 draws 
conclusions. 

2 GASIFICATION MODELLING 

Gasification is a complex chemical process that 
involves a multitude of phenomena, like 
devolatization, pyrolysis, heterogeneous gas-solid 
reactions and homogeneous gas-gas reactions 
(Govind and Shah, 1984; Liu et al., 2000; Benyon, 
2002). Each phenomenon has its one rate of reaction 
and a full CFD, heat transfer and chemical kinetic 
simulation is required to perform a detailed 
simulation of the process. See Benyon (2002) for an 
excellent dissertation on the subject. A brief 
description of the process follows. 

The first part of the gasification process is the 
pyrolysis of the fuel. When solid fuels are concerned 
the term devolatilization is usually utilized. During 
pyrolysis some gaseous constituents are released 
from the fuel. These include CO, CO2, H2, H2O, 
H2S, COS, HCN, NH3, CH4, C2H2 and some other 
heavier hydrocarbons in lesser quantities. 

After pyrolysis a char residue containing fixed 
carbon and ash will remain and will undergo further 
oxidation. The volatiles released will react in the 
gaseous phase. 

The main char heterogeneous reactions are 
reactions between the char’s fixed carbon and O2, 
H2, H2O and CO2 producing CO, H2, CO2 and CH4. 
Reactions with O2 and H2 are exothermic and those 
with H2O and CO2 are endothermic. See Benyon 
(2002) for details. 

In the gaseous phase there will be combustion 
reactions that will tend to convert all of the 
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hydrocarbons into CO2 and H2O and some 
equilibrium reactions, noticeably the water-gas shift 
and the methanation reactions, to be described below 
– Eqs. (1) and (3). 

In the present paper a simplified gasification 
model was used. It is an equilibrium model that 
assumes a homogenous temperature throughout the 
reaction zone and neglects chemical kinetics effects 
and detailed heat transfer modeling. Therefore, all 
the reactions are assumed to attain their equilibrium 
concentrations at the reaction temperature. This 
assumption is very justifiable, since industrial 
gasifiers are designed in such a way that irreversible 
gasification reactions proceed to their completion 
and reversible ones attain equilibrium within the 
reaction chamber and within the reactants residence 
time. Therefore, in industrial gasifiers that are 
commercially available, we can expect to have a 
homogeneous temperature and equilibrium 
conditions at the gasifier’s exit. Of course, this 
model will not allow for an in depth analysis of the 
intermediate stages of the gasification complex 
phenomena, but that is not the purpose of the present 
research, which focus on the overall exit conditions 
only. 

This model is based on mass balances for each 
atomic species (C, H, O, N and S), an energy 
balance in order to compute the gasification’s final 
temperature and on the equilibrium between the 
species using reactions (1) to (5). 

222 HCOOHCO +⎯→⎯+  (1) 

OHCOSCOSH +⎯→⎯+

OHCHHCO 3 +⎯→⎯+

23 NHNH ⎯→⎯+

222  (2) 

242  (3) 

322  (4) 

                (5) 4323 CHNHHHCN +⎯→⎯+
 

Each element mass balance provides one 
equation. The enthalpy equation offers another one. 
Each of the equilibrium reactions (1) to (5) provides 
an equation for the species concentration. See any 
standard text book, e.g., Levine (1988), for details 
on chemical equilibrium. 

Therefore, we have eleven equations (five for 
elements mass balance, one for enthalpy and five for 
equilibrium reactions) and eleven unknowns: the 
temperature, T, and the mass flow of the syngas 
constituents (H2, CO, H2O, CO2, N2, H2S, COS, 

CH4, HCN and NH3). The result is a determined 
system of non-linear equations that can be solved 
through any of the standard numerical techniques 
available in the literature. 

Having the mass flow of all the elements in the 
resulting syngas, it is straight forward to compute 
their respective percentage in the syngas 
composition, both in terms of mass and in terms of 
volume. 

The Cold Gas Efficiency is defined, as said 
before, as the quotient between the heating capacity 
of the syngas and the original fuel heating capacity. 
This quotient is expressed in Eq.(6) where the index 
i ranges over all syngas constituents, LHV means 
Lower Heating Value, and m with an over dot means 
mass flow. 

FuelFuel

i
ii

LHVm

LHVm
CGE

&

&∑
=  (6) 

Of course that, besides the parameters that will 
be manipulated (oxygen to fuel ratio, steam to fuel 
ratio, etc…), the fuel elementary composition, fuel 
mass flow and fuel LHV must be supplied as inputs 
to the model. 

Again, notice that, although this model is much 
simpler than the full numerical approach presented 
in, e.g., Govind and Shah (1984), Liu et al. (2000) or 
Benyon (2002), it retains the major effects of the 
influence of the parameters that are being 
manipulated in the objective functions under 
analysis, being therefore well suited for the purpose 
at hand. Also, being much simpler, this model is 
more manageable, has reduced computational times, 
and is thus better suited for linking with Genetic 
Algorithms. 

3 SEARCH AND OPTIMISATION 
PROCESS 

The search and optimization method used is a 
Genetic Algorithm. The use of a GA was suitable for 
the problem under study due to its non-linearity, and 
to the possible existence of local minima, where a 
conventional optimization procedure might become 
trapped. Since a GA searches from a population of 
points, not a single point, the probability of the 
search getting trapped in a local extreme is limited. 
GAs start searching by randomly sampling within 
the solution space, and then use stochastic operators 
to direct a hill-climbing process based on objective 
function values. Genetic Algorithms were first 
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presented by Holland (1975), and made familiar to a 
broader audience by Goldberg (1989). 

A standard Genetic Algorithm was used, with a 
total population of 30 individuals per generation, 
evolution being carried out through 100 generations. 
This means that for each run, 3000 possible 
solutions are evaluated, even though there will be 
some degree of repetition among them. One of the 
sources of solution overlapping among generations 
is elitism, a strategy used in this study, in which the 
best individual of a generation is always copied to 
the following population. A simple kind of memory 
can thus be implemented to reduce computational 
time, so that when the GA is confronted with a 
previously evaluated solution, it automatically 
retrieves its objective function values. Uniform 
crossover, which works allele by allele, was used 
throughout the experiments. The probability of 
crossover was 0.5, and the probability of mutation 
was kept as 0.04. 

The study also compares results using a micro-
GA and the conventional GA. The main difference 
between the two methods relies on the population 
size used. Typical population sizes for GAs range 
from 30 to 200, based on earlier studies such as 
those of Grefenstette (1986), where suggestions for 
optimal population choices based on parametric 
studies are presented. In this study we use a strategy 
named micro-GA (Krishnakumar 1989), which starts 
with a small population (in this case, of only 5 
individuals) and quickly makes it converge to a 
solution. Convergence is measured by comparing the 
chromosomes of the individual solutions. If they 
differ by less that 5%, it is considered the population 
has converged. When that happens, the micro-GA 
restarts a new random population while carrying 
over the individual with the best fitness in the 
previous generation (elitism). This way, new 
individuals are often brought into the search, without 
loosing track of the ones that did better until that 
point. An advantage of using the micro-GA 
procedure is that the algorithm tends to perform a 
local search around the best solutions during the 
generations prior to convergence, since at that stage 
solutions only differ by a few alleles. This local 
search is important in finding local minima around 
good solutions, and is usually hard to implement in 
conventional GAs. Another advantage is that the 
search procedure is faster, since the micro-GA does 
not have the inertia of the large populations 
associated with conventional GAs.   
 

4 RESULTS AND DISCUSSION 

Two different fuels for gasification were studied: 
Visbreaker Tar and Petcoke. These are refinery 
residues and a common fuel for gasification. Their 
elementary analysis and Lower Heating Value can 
be seen in Table 1. 

Table 1: Properties of the fuels under study. 

 Visbreaker Tar Petcoke 
C (% wt) 86.1 88.6 
H (% wt) 10.4 2.8 
O (% wt) 0.5 0 
N (% wt) 0.6 1.3 
S (% wt) 2.4 7.3 
LHV (kJ/kg) 40,938 33,680 

Lower and upper bounds for each variable used in 
this study are shown in table 2. Please note that the 
fuel load considered was 3.6 ton/h, or 1 kg/s, which 
mean that the total fuel heat capacity is about 40,000 
kW for Visbreaker Tar and around 33,500 kW for 
Petcoke. Therefore, the upper bound of the heat 
recovered is around 25% of the total fuel heat 
capacity. 

Table 2: Lower and upper bounds for each variable. 

 Press. 
(bar) 

Oxigen/ 
Fuel 

Steam
/ Fuel 

Heat Recov. 
(kW) 

Lower bound 20 0 0 0 

Upper bound 57.5 2 2 9000 

Results converge independently of the starting 
population, which is random. This can be seen in 
Fig.1, which depicts the Cold Gas Efficiency (CGE) 
of the population’s best individual solution plotted 
against the number of elapsed generations for 3 
different initial populations. Fig.2 shows the search 
evolution for the best individual Cold Gas 
Efficiency, for 500 generations. It can be seen that 
the quality of the solutions improved sharply during 
the first generations, a tendency which continued 
steadily, though in a less prominent fashion, until 
approximately generation 100, after which 
improvements were only marginal. 

As can be seen from Table 1, the best Cold Gas 
Efficiency the GA was able to attain when gasifying 
Visbraker Tar was 89%. This value of CGE is 
reached when the Pressure, Oxygen/Fuel ratio, 
Steam/Fuel ratio and Heat Recovered have the 
following values (22.5 bar, 0.89, 0.41, 0 kW). For 
this solution the Dry Hydrogen Percentage (DHP) in 
the gas is 44%. 

If, conversely, we maximize the DHP, a value of 
52% is reached for this parameter. The operating 
conditions are (20 bar, 1.02, 1.94, 0 kW) and the 
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CGE is 83%. As can be seen, the largest change in 
the operating parameters between these two cases 
occurs in the Steam/Fuel ratio. 

It was interesting to find out that thermal 
efficiency, although being a relevant parameter to 
measure the overall efficiency of the process, should 
not be used as an objective function. The reason for 
this is that an excessive weight will be placed in the 
heat recovered, hurting both the CGE and the DHP 
in the syngas. The gasification process would then 
be shaped almost as a heat generating process, and 
this is not the intention. As an example, if thermal 
efficiency was to be maximized in the above case, 
the operating parameters would be (20 bar, 1.43, 0, 
9575 kW), resulting in a thermal efficiency of 92%. 
However, the CGE would only be 68% and the DHP 
would equal 29%. As it can be seen, these 
parameters are worse than either of the previous 
cases, thus confirming that this solution should be 
avoided. 
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Figure 1: Evolution of the best individual Cold Gas 

Efficiency for three random initial populations. 

Figure 2: Evolution of the best individual Cold Gas 
Efficiency (CGE) throughout 500 generations. 

If the two previous operating conditions - (22.5 bar, 0.89, 
0.41, 0 kW) and (20 bar, 1.02, 1.94, 0 kW) - were to be 
used for a different fuel (in the present case Petcoke), the 
resulting CGE and DHP would be 88%, 29% for the first 
case and 79%, 41% for the second. In case the operating 
conditions were maximized for Petcoke, the solutions 

obtained would be (20 bar, 0.83, 0.51, 0 kW), CGE=89%, 
DHP=30% if CGE is maximized and (20 bar, 1.02, 2.0, 
540 kW), CGE=79%, DHP=42% if DHP is maximized. 
These operating condition do not differ significantly from 
those obtained when Visbreaker Tar was being considered, 
so, at least for these two petrochemical products, optimum 
operating conditions are rather independent of fuel 
composition. Table 3 summarizes the results obtained 
using a standard GA. Note that the 540 kW present in the 
last line of Table 3 are under 1.5% of the total fuel heat 
capacity of this case, being therefore almost negligible. 

Table 3: Results obtained using a standard GA. Values in 
bold indicate the objective function being maximized. 

 Variables Objective 
Functions 

Fuel Press. 
(bar) 

Oxigen 
/ Fuel 

Steam 
/ Fuel 

Heat 
Recov. 
(kW) 

CGE DHP 

Visbreaker 
Tar 22.5 0.89 0.41 0 89% 44% 
Visbreaker 
Tar 20 1.02 1.94 0 83% 52% 
Petcoke 
 20 0.83 0.51 0 89% 30% 
Petcoke 
 20 1.02 2 540 79% 42% 

Finally, the Micro-GA technique was tested in the 
same cases. Results were equivalent to those 
obtained using a conventional GA. Therefore, no 
apparent advantage resulted from the local search 
features introduced by the Micro GA. In fact, 
slightly inferior results were observed when using 
the Micro GA. The evolution of the cold gas 
efficiency of the population’s best individual 
solution for Visbreaker Tar is presented in Fig.3 as 
an example, which compares almost exactly with 
Fig.1. Again, three random and independent initial 
population solutions are presented. 
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Figure 3: Evolution of the best individual Cold Gas 
Efficiency (CGE) for three random initial populations, 

using a Micro GA. 

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 20 40 60 80 100

Generation

C
G

E

Run 1

Run 2

Run 3

ICINCO 2004 - INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION

62



 

5 CONCLUSIONS 

The optimisation method developed is fast, simple 
and robust enough to be used for on-line adjustment 
of the gasification operating parameters for each fuel 
composition and aim of gasification, thus improving 
overall performance of the industrial process. 

Thermal efficiency should not be chosen as an 
objective function to be maximized under the 
penalty of placing too much emphasis on the heat 
recovered, thus compromising both the CGE and 
DHP of the syngas. 

The fundamental parameter that will influence 
the best operating conditions for heat/power 
production or hydrogen production is the Steam/Fuel 
ratio, the Oxygen/Fuel ration being correspondently 
adjusted. 

Heat recovered should be marginal in order to 
attain optimal conditions. 

Results seem to be rather insensitive of pressure. 
However, even if pressure is a less important 
parameter for CGE and DHP, it is fundamental in 
the operational aspects of the gasification. 
Furthermore, and most importantly for industrial 
applications, pressure is determinant for determining 
the gas production capacity of the gasifier. 
Therefore, operating pressure is a parameter that 
should not be overlooked. 

For the two studied fuels, the best operating 
conditions to maximize CGE or DHP seem to be 
independent of the fuel. Further work is required to 
evaluate if this feature remains in a broader range of 
fuels, including biomass and other non-
petrochemical fuels. 

The Micro-GA technique was also used with 
identical results than those obtained through regular 
GA, no benefits resulting from the local search 
features of the Micro-GA. 

Future work will include the expansion of these 
methods to multicriteria optimization, using Pareto-
based techniques. 
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