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Abstract: We present an algorithm for merging two partial maps obtained with a laser range scanner into a single map.
The most unique original aspect of our algorithm is that it does not require any information on the position
where the scans were collected but uses only geometrical features of the scans.

1 INTRODUCTION

The increasing use of mobile robots equipped with
laser range scanners has stimulated the development
of methods for matching and aligning scan data col-
lected by these sensors. Usually these methods align
two scans starting from some information about the
relative position of the sensors obtained from odome-
try (Lu and Milios, 1997; Cox, 1991; Röfer, 2001).
Some methods (Einsele, 1997; Martignoni III and
Smart, 2002) do not use information coming from
odometry, but they work well only in rectilinear en-
vironments and for small displacements of the robot.

In this paper we present a method for matching two
scans that does not require any odometry informa-
tion and that works for significant displacements of
the robot. For the purposes of this paper, a scan is
a collection of segments. In our experimental setting
each scan is obtained by acquiring with a SICK LMS
200 laser range scanner (mounted on a Robuter mo-
bile platform at a height of approximatively 50 cm) a
sequence of distance measurements along directions
separated by a programmable angle (1◦, in our case)
sweeping 180◦. The result of the sensing operation
is thus a set of points expressed in polar coordinates,
with the origin of the coordinate frame in the sensor
itself. We approximate these points with a set of seg-
ments following the method described in (Gonzáles-
Baños and Latombe, 2002). The use of segments in-
stead of points reduces the computational complexity
of finding the match between scans. Since the method
does not use odometry information, it relies exclu-
sively on the geometry of the scans. In particular, we
consider the angles between pairs of segments in the

scans as a sort of “geometrical landmarks” on which
the matching process is based. We assume that the
robot moves on an indoor 2D surface and that walls
and vertical objects are at the height of the laser scan.

The method integrates two scans, S1 and S2, into a
map S1,2. It is composed of three major steps:

1. find the possible transformations of S2 on S1;
2. evaluate the transformations to identify the best

transformation t̄ of S2 on S1;
3. apply the best transformation to S2 (obtaining S t̄

2)
and fuse the segments of S1 and of S t̄

2 to obtain
S1,2.

This paper is structured as follows. The next Sec-
tion describes in detail our method, while in Section 3
we discuss the experimental activity performed to val-
idate it. Section 4 concludes the paper.

2 THE PROPOSED METHOD

In the algorithms, two points are considered to co-
incide when they are closer than POINTDISTANCE-
TOLERANCE (in our experiments we set this param-
eter to 15mm) and two angles are considered equal
when their values differ for less than ANGLEDIFFER-
ENCETOLERANCE (in our experiments we set this pa-
rameter to 0.2 rad).

2.1 Finding Transformations

This step, given the scans S1 and S2, first finds the an-
gles between the segments in S1 and between the seg-
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ments in S2 and, second, finds the possible transfor-
mations (namely, the rotations and translations) that
superimpose at least one angle α2 of S2 to an equal
angle α1 of S1. Angles between pairs of segments in a
scan are the geometrical landmarks we adopt. Finding
the possible transformations is a difficult combinato-
rial problem since in principle, without any informa-
tion about the relative positions of the two scans, there
are O(n21n

2
2) possible transformations, where n1 and

n2 are the numbers of segments in S1 and S2, respec-
tively. We have therefore devised three heuristics for
reducing this complexity and finding a set of (hope-
fully) significant transformations between two scans.
They are described in the following.
1. Considering Angles between Consecutive Seg-
ments. In each scan, we select the angles between
two consecutive segments; let As

1 and As
2 be the sets

of such angles for S1 and S2, respectively. Two seg-
ments are considered consecutive when they have an
extreme point in common. Then, we find the set of
all the transformations that make an angle in As

2 to
correspond to an equal angle in As

1. The number
of possible transformations found by this method is
O(n1n2). We note that finding the sets As

1 and As
2 is

greatly facilitated when the segments in S1 and in S2
are ordered. This is usually the case with laser range
scanners, since the points returned by the sensor are
ordered counterclockwise and it is straightforward to
maintain the same order in the segments that approx-
imate the points.

Although this method seems to perform well in in-
door environments where the angles are usually nor-
mal, the errors introduced by the sensor and by the
algorithm that approximates points with segments al-
ter the representation of these angles.
2. Considering Angles between Randomly Se-
lected Segments. In each scan, we examine a num-
ber of angles between pairs of segments selected ran-
domly. We assign a higher probability to be selected
to longer segments, since they provide more precise
information about the environment. Let Ar

1 and Ar
2

be the sets of the selected angles for S1 and S2, re-
spectively. We find the set of all the transformations
that brings an angle in Ar

2 to correspond to an equal
angle in Ar

1. The number of transformations gener-
ated by this method is O(a1a2), where a1 = |Ar

1| and
a2 = |Ar

2| are the number of selected angles in Ar
1

and Ar
2, respectively.

Instead of assigning directly to each segment the
probability of being selected (according to its length)
and of selecting the a1 (respectively a2) pairs, the
following approximate and easy-to-implement tech-
nique is employed. Initially only segments longer
than SEGMENTDIVISIONFACTOR times the length of
the longest segment in S1 (resp. S2) are considered
for selection. All the segments considered have equal
probability of being selected. Then, we proceed to it-

erate with k = 1, . . . ,K. In the k-th iteration, we use
a threshold equal to SEGMENTDIVISIONFACTORk

times the length of the longest segment in S1 (resp.
S2). Out of the segments longer than this threshold
we select one with equal probability. Thus, the pa-
rameter SEGMENTDIVISIONFACTOR determines the
length of the segments that are considered for selec-
tion and, implicitly, the probability of selection. This
technique tries first to find transformations based on
angles between long segments; then it progressively
considers transformations based on angles between
shorter and shorter segments.
3. Considering Angles between Perpendicular Seg-
ments. In each scan, we select only angles between
perpendicular segments. This heuristic is particularly
convenient for indoor environments, where the pres-
ence of regular walls usually involves perpendicular
segments. The heuristic is based on histograms. The
histogram of S1 (and, in similar way, that of S2)
is an array of nslots elements, where nslots is the
number of buckets of the histogram. Each bucket
Li (i = 0, 1, . . . , nslots − 1) contains the segments
with orientation comprised between π × i/nslots and
π × (i + 1)/nslots, measured with respect to a given
reference axis. To each element Li of the histogram
of S1 is associated a value calculated as the sum of the
lengths of the segments in Li. The principal direction
of an histogram is the element with maximum value.
The normal direction of an histogram is the element
that is π/2 rad away from the principal direction. Let
Ah
1 and Ah

2 be the sets of angles formed by a seg-
ment in the principal direction and by a segment in
the normal direction of the histograms of S1 and S2,
respectively. The set of possible transformations is
then found comparing the angles in Ah

1 and Ah
2 . The

number of possible transformations generated by the
above heuristic is O(p1n1p2n2), where pi and ni are
the number of segments in the principal and normal
directions of the histogram of scan Si.

2.2 Evaluating Transformations

Every transformation found in the previous step
is evaluated in order to identify the best one. To
determine the goodness of a transformation t we
transform S2 on S1 (in the reference frame of S1)
according to t (obtaining St

2), then we calculate
the approximate length of the segments of S1 that
correspond to (namely, match with) segments of
St
2. The measure of a transformation is the length

of the corresponding segments that the transforma-
tion produces. More precisely, the measure of a
transformation is the sum of all the matching values
calculated for every pair of segments s1 ∈ S1 and
st
2 ∈ St

2. The matching value between two segments
s1 and st

2 is calculated as follows. We project st
2

on the line supporting s1 thus getting a projected
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segment st
2p and then we compute the length l1 of

the common part of s1 and st
2p; we do the same but

projecting s1 on st
2, obtaining l2. The matching value

of s1 and st
2 is calculated as the average of l1 and l2.

When s1 and st
2 do not intersect, the matching value

is multiplied by 0.95d(s1,st

2
)/POINTDISTANCETOLERANCE

to penalize the match between segments that are
far away. Note that 0.95 is an empirical constant
whose value has been determined during exper-
imental activities and d(s1, s2) is the distance
between two segments, calculated as d(s1, s2) =
min(max(dist(s1, start(s2)), dist(s1, end(s2))),
max(dist(s2, start(s1)), dist(s2, end(s1)))) where
start(s) and end(s) are the extremes of seg-
ment s. Finally, two special cases can appear
during the evaluation of the matching values
of s1 and st

2. The matching value is set to 0
when the two segments are too far away, namely
when d(s1, s

t
2)/POINTDISTANCETOLERANCE >

SEGMENTDISTANCETHRESHOLD. SEGMENTDIS-
TANCETHRESHOLD is usually set to 5 to obtain good
experimental results. The matching value is set to
−1 when the two segments intersect and are longer
than SEGMENTLENGTHREFUSE; in this case the
transformation is discarded.

The above algorithm evaluates a single transforma-
tion by considering all the pairs of segments of the
two scans that are O(n1n2).

2.3 Transforming and Fusing Scans

Once the best transformation t̄ has been found, the
third and last step of our method transforms the sec-
ond scan S2 in the reference frame of S1 according to
t̄ obtaining S t̄

2.
The map that constitutes the output of our scan

matching method is obtained by fusing the seg-
ments of S1 with the segments of S t̄

2. To this
end, we use the idea of matching chains. A
matching chain of the pair of scans S1 and S t̄

2

is a set C = {〈s1, s
t̄
2〉|s1 ∈ S1 and st̄

2 ∈
S t̄
2 have a positive matching value for t̄} alge-

braically closed under segment belong-to relation.
Specifically, a matching chain C is such that if
〈s1, s

t̄
2〉 ∈ C, then also 〈s1, s〉 ∈ C and 〈s, st̄

2〉 ∈ C
for all the segments s that have a positive match
value (namely, have matched with) s1 or with st̄

2.
We explicitly note that, given an element 〈s1, st̄

2〉,
the matching chain C that contains (that is generated
by) 〈s1, st̄

2〉 is uniquely identified. A transformation
t̄ generates a set of (disjoint) matching chains. The
main idea behind the fusion of segments is that each
matching chain (i.e., each set of matching segments)
is substituted in the final map by a single polyline.
Therefore, the final map is obtained by adding the

polylines that represent the matched segments to the
unmatched segments of S1 and S t̄

2. The problem is
thus reduced to build a polyline that approximates the
segments in a matching chain C. With this polyline,
it is easy to smoothly connect the different segments
inserted in the final map.

The solution to the above problem consists in itera-
tively building a sequence of approximating polylines
P0, P1, . . . that converges to the polyline P that ade-
quately approximates (and substitutes in the resulting
map) the matching segments in C. The polyline P0 is
composed of a single segment connecting the pair of
farthest points in C. Given the polyline Pn−1, call s
the segment in (a pair belonging to) C that is at max-
imum distance from its (closest) corresponding seg-
ment s̄ in Pn−1. If the distance d(s, s̄) is less than the
acceptable error, then Pn−1 is the final approximation
P . Otherwise, s substitutes s̄ in Pn−1 and s is con-
nected to the two closest segments in Pn−1 to obtain
the new polyline Pn.

3 EXPERIMENTAL RESULTS

The method presented in this paper has been coded
in ANSI C++ employing LEDA libraries 4.2 (LEDA
Library, 2004) for two-dimensional geometry and has
been run on a 1GHz Pentium III processor with Linux
SuSe 8.0. We considered 31 pairs of scans (from
S1 − S2 to S31 − S32) that have been acquired by
driving the robot manually and without recording any
odometric information. The scans have been collected
in a laboratory, a very scattered environment, in a nar-
row hallway with rectilinear walls, and in a depart-
ment hall, a large open space with long perpendicular
walls. The correctness of the scan matches has been
determined by visually evaluating the initial scans and
the final map with respect to the real environment. For
every scan match, we tested the basic method and the
three heuristics, sometimes modifying the values of
the parameters.

In general, our experimental results demonstrate
that our method performs very well: 28 pairs of scans
out of 31 have been correctly matched. Unsurpris-
ingly, the histogram-based heuristic worked well with
scans containing long and perpendicular segments, as
those taken in the hallway and in the hall. The heuris-
tic based on consecutive segments seems to work well
in all three kinds of environment, even if sometimes
it needs some parameter adjustments.

Table 1 shows the results obtained for three inter-
esting scan matches (see also Fig. 1). S4 and S5 were
taken inside the laboratory: they contain a large num-
ber of short segments since the environment is highly
scattered. S18 and S19 were taken along the hallway:
they contain fewer segments than the previous scans
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Figure 1: Top, left to right: scans S4, S5, S18, S19, S25, and S26; bottom, left to right: final maps S4,5, S18,19, and S25,26

and are characterized by long rectilinear segments.
S25 and S26 were taken in the hall: they contain only
few segments since the environment is characterized
by long rectilinear and perpendicular walls.

Table 1: Some experimental results
S4 S5 S18 S19 S25 S26

# of segments 47 36 24 24 10 12
All 936 s [41260]1 32 s [3096] 0.38 s [231]
Consecutive 1.25 s [2] 0.73 s [27] 0.13 s [4]
Random2 7.69 s 2.51 s 0.78 s
Histogram 3.29 s [73] 1.97 s [192] 0.15 s [32]

1 [Number of possible transformations that have been evaluated]
2 Obtained by generating about 20000 angles

4 CONCLUSIONS

We have described a method for scan matching that
works without any information about the relative po-
sitions of the two scans but relies exclusively on the
geometrical features of the scans. This is the major
feature which distinguishes our method from most of
the scan alignment and matching methods reported
in the literature. Extensive experimental results vali-
dated the effectiveness of the approach. We are work-
ing to apply this method to the integration of n scans.
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