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Abstract: In this paper a new approach for the Guaranteed Cost Control Problem (GCCP) is presented, using two 
efficient tools, Linear Matrix Inequalities (LMIs) and Genetic Algorithms (GAs). A linear system with 
parametric uncertainty is considered for which a control law is to be found, minimizing a performance 
index. In a previous paper, an efficient method has been presented by using an LMI optimisation technique. 
A combined use of LMIs and GAs is proposed in the present approach that allows further improvement of 
the design procedure. 

1 INTRODUCTION 

The guaranteed cost control problem (GCCP) has 
drawn considerable attention in the last few years 
(Kosmidou, 1991), since the inclusion of 
uncertainties in the system model, with the 
appearance of robust control theory, is a standard 
practice. Most of the approaches to this problem 
make use of linear optimization techniques to find 
best solutions that satisfy some constraints of a 
specified problem. For convex problems, LMI 
techniques are now very efficient (Fischman, 1996). 

However, searching methods have the major 
drawback due to the fact that they may converge to a 
local minimum or maximum. 

Genetic Algorithms (GAs) come to negotiate this 
drawback, providing an alternative stochastic 
searching process, in which the natural evolutionary 
theory is adapted. Successive application of GAs in 
control theory has led to very promising results 
(Kundu, 1996). 

In this paper, a new genetic algorithm is 
presented, which makes use of the LMI tool to 
compute the fitness value, of its candidate solution 
of the current population.  

The paper is organized as follows: In Section 2 
the guaranteed cost control problem is formulated. A 
general presentation of Genetic Algorithms and the 
basic operators they used is given in Section 3. The 
main idea of the proposed technique is described in 
details in Section 4, while an experimental 

verification of this method is performed through a 
numerical example, in Section 5. Finally, Section 6 
presents conclusions and perspectives.  

2 PROBLEM FORMULATION 

Consider the linear uncertain system in state-space 
representation 
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where x(t)∈Rn is the state vector, u(t)∈Rm is the 
control vector, A0 and B0 are the state and control 
matrices, respectively, having appropriate 
dimensions.  

The system uncertainties are described by   
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where the scalars ai(t), bi(t) are uncertain parameters, 
possibly time-varying, belonging to specified ranges, 
and Ai, Bi are given constant matrices determining 
the uncertainty structure. Without loss of generality, 
one can always assume that Ai, Bi have unity rank 
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and thus they may be decomposed in form of 
products of vectors of appropriate dimensions, as 
follows: 
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This is called the rank-1 decomposition. By 

using these vectors, define the matrices 
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where si, i=1,…,p and ti, i=1,…,q are positive 
scalars. Since decomposition (3) is not unique, these 
scalars may be chosen to determine a suitable rank-1 
decomposition in order to satisfy different design 
requirements. In other words the elements S, T will 
be treated as free parameters, in the design 
procedure.  

Consider also the quadratic performance index of 
the form: 
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with Q0>0, R0>0 . 

As shown in (Kosmidou, 1996, Fischman, 1996) 
the guaranteed cost control law of the form  

 
( ) ( )tPxBRtu T1* −−= δ  (6) 

 
ensures an upper bound of the quadratic 
performance index (5) for all parameter variations 
consistent with (2), called guaranteed cost,  
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The nxn matrix P is the positive definite solution 

of the modified Riccati equation associated with the 
GCC problem, 
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 has been proposed in 
(Fis

thod, by involving genetic algorithms, 
for the searching of the free parameters (S, T, δ) of 
the system. 

, depending on the specific 
app

, there are some specific 
pro

he sequel, terminology in the field of genetic 
me ods for optimization and searching purposes is 
giv

 is a solution of a problem satisfying 
the
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ystems. The fitter 
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The scalar δ and the scaling matrices S, T are 
chosen by the designer. 

Since the GCC problem is often related with 
conservatism, i.e. the resulting upper bounds are too 
large with respect to the minimal J obtained from the 
LQR optimal design for the system without 
uncertainty, it is desirable to make J* as small as 
possible. This leads to an auxiliary optimization 
problem, which is often analytically not tractable. 
An efficient solution

chman, 1996) by solving an LMI objective 
minimization problem. 

That approach is being improved using the 
proposed me

3 GENETIC ALGORITHMS 

Genetic Algorithms (GAs) have played a major role 
in many applications of the Engineering Science. As 
mentioned above, GAs constitute a powerful tool to 
optimization tasks. In other words, a simple GA is a 
stochastic method that performs searching in wide 
search spaces and depends on some probability 
values. For these reasons as well as its parallel 
nature, it has the ability to converge to the global 
minimum or maximum

lication, and to skip possible local minima or 
maxima, respectively. 

The main idea in which GAs are based, was first 
inspired by J. Holland (Holland, 2001). He tried to 
find a method to imitate the evolutionary process 
that characterizes the evolution of living organisms. 
This theory is based on the mechanism qualified by 
the survival of the fittest individuals over a 
population. In fact

cedures taking place until the predominance of 
the fittest individual. 

In t
th
en: 
 
Individual

 constraints and demands of the system in which 
it belongs. 

Population is a set of candidate solutions of the 
problem, which contains the final solution. 

Fitness is a real number value, which
racterizes any solution and indicates how proper 

is this solution for the problem under consideration. 
Selection is an operator applied to the current 

population, in a manner similar to the one of natural 
selection found in biological s
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imple Genetic Algorithm, which uses some 
of the operations discussed above, is presented in 
Fig.1. 

viduals are promoted to the next population and 
poorer individuals are discarded. 

Crossover is the second operator that follows the 
previous one. This operator allows solutions to 
exchange information, in such a way that the living 
organisms use in order to reproduce themselves. 
More specifically, two solutions are selected to 
exchange their sub-strings from a single point and 
after (single point crossover), according to a 
predefined probability Pc. The resulting offsprings 
carry some information from their parents. In this 
way new individuals are produce

Initial
population

Decode
the

population

Find
Fitness Selection

Crossover

MutationReplaceNew
population

 

didate solutions are tested in order to find the one 
that satisfies the appropriate objective. 

Mutation is the third operator that can be applied 
to an individual. According to this operation each

Figure 1: Block diagram of a simple GA 
 

In the next section, an LMI-based genetic 
algorithm is proposed and applied to the guaranteed 
cost control problem described in Section 2.  gle bit of an individual binary string, can be 

flipped with respect to a predefined probability Pm.  
There is a different procedure that can be 

considered for a single iteration of a genetic 
algorithm, called Elitism. During this operation the 
probability of discarding the fittest individual is 
minimized, since at each generated population, the 
fittest individual is checked whether it has a lower 
fitness than the elite member of the previous 
generation. If so, a randomly selected individual is 
replaced by the old elite member. Thus, it is 
guaranteed that the fittest individual will be 
promoted to the n

4 LMI-GENETIC METHOD 

As previously mentioned, a first attempt of using 
LMI optimizations in Guaranteed Cost Control 
(Fischman, 1996) appeared very promising. Besides, 
genetic algorithms seem to be very efficient in 
solving various optimization problems in which the 
searching space is complex. 

In the proposed method, a combination of two 
optimization tools is used. More precisely, the 
genetic algorithm is used to find a suitable variable 
set (S, T, δ), while the LMI optimization, used in 
(Fischman, 1996) is applied to find an optimum 
matrix P that satisfies some prespecified constraints. 
By using the obtained matrix P, a fitness value is 
assigned to the corresponding candidates and 
process goes on.  

eleration of the overall speed of the algorithm is 
derived in this way. 

In the present algorithm, an elitism based 
reinsertion method is used

cess, a predefined number of individuals (the 
least suitable) are replaced. 

Since these operators have been applied to the 
current population, a new population will be formed 
and the generational counter will be increased by 
one. This process will contin

This method can be viewed as a simple genetic 
algorithm that uses the LMI tool to find the fitness 
of the resulting candidate individuals of the problem, 
under consideration. 

ber of generations is attained or some form of 
convergence criterion is met. 

A s To be more specific, consider the modified 
genetic algorithm depicted in Fig. 2. This algorithm 
is similar to the simple genetic algorithm of Fig.1, 
with the difference that an LMI optimization 
mechanism is used, to compute the objective value 
of the current candidate solutions.  
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Figure 2: The proposed LMI-based Genetic Algorithm 

The LMI optimization procedure described in 
Fig.2, consists of the following Theorem which is a 
modified version of Theorem 3 in (Fischman, 1996) 
and stated as, 

 
Theorem 
 
 The minimization of the value of the guaranteed 

cost (5) for the uncertain system (1) is ensured by a 
control law of the form (6), if the optimization 
problem described by equation (9) has a non empty 
set of feasible solutions (M, W) with M, W being 
symmetric positive definite matrices, and P = W-1. 

 
The difference of the above Theorem from 

Theorem 3 of (Fischman, 1996) is that the matrices 
S, T and the scalar δ, are not variables of the LMI 
optimization process, but constant values that come 
from the genetic algorithm.   

In other words, the genetic procedure manages to 
find candidate sets of the (S, T, δ) variables, and 
passes these sets into the LMI optimization for 
finding optimal value of the matrix P.  

The resulted matrix P is used in equation (7) to 
derive the corresponding guaranteed cost, with a 
known initial condition x0. 

Before the beginning of the proposed algorithm, 
one has to take some decisions about the parameters 
that must be defined, in order to initialize the 
procedure. Some of these parameters are (Coley, 
2001) 

 
• Type of individual representation (real, 

binary, etc.) 
• Population size (typical values are 20-

100) 
• Length of individuals (L, depends on 

the range of the parameters) 
• Crossover probability (Pc: typical 

values are 0.4-0.9) 
• Mutation probability (Pm=1/L, 0.01) 
• The selection operator 
• Number of Generations 

 
The proposed algorithm can be summarized in the 
following steps: 
 
Algorithm 
 

Step 1: Generation of the initial population, 
consisting of 100 individuals. Each 
individual contains, three variables (S, 
T, δ), in binary representation, of 
length 20 each one. 

Step 2: The candidate sets of the variables (S, 
T, δ) are appeared as solutions of the 
problem. Each one of this set, is 
passed as constant matrices into 
equation (9), and the LMI procedure is 
started. 
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Step 3: The resulted matrix P is used to 
compute the guaranteed cost that 
corresponds to the set of (S, T, δ), by 
using (7). ⎥
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Step 4: The computed cost J, consists the 
objective value of the respective set 
(S, T, δ), and is used for the fitness 
assignment operator of the genetic 
algorithm. 

⎥
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Step 5: The algorithm continues, by applying 
the genetic operators, presented in 
Fig.2, with the appropriate settings.  

with the uncertainty matrices: Step 6: A new population is obtained and the 
algorithm goes to Step 2 until a fixed 
number of generations is achieved. 
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 When the above algorithm has been terminated, 
the individual with the higher fitness value is the 
solution of the respective problem. Thus the 
variables that consist the fitter individual, is the 
optimum set of problem variables (S, T, δ), which 
obtains a minimum guaranteed cost control J*.   ( ) ( )
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The above algorithm is now illustrated by means 
of a numerical example. 

 
Let the uncertainty decomposition matrices be as 

follows: 5 NUMERICAL EXAMPLE 

[ ] ,101822.00,
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A common problem (Kosmidou, 1996, Fischman, 
1996) is considered in this section in order to 
investigate the performance that can be achieved by 
using the proposed method. 

This problem represents a 4th order model of a 
helicopter in a vertical plane for an airspeed range of 
60 knots to 170 knots. For this range of operating 
conditions significant changes occur in elements a32, 
a34 and b21 of the system matrices, where the 
nominal matrices are the following: 
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while the R0 = I2 and Q0 = I4 . 
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(a) 

 

(b) (c) 

Figure 3: Fitness landscape in three cross sections, of the proposed genetic algorithm, (a) ST, (b) SZ and (c) TZ cross sections 

(a) 

 

(b) (c) 

Figure 4: The complex plane with the poles of (a) open system, (b) closed loop system with the control law of (Fischman, 
1996), and (c) closed loop system with the control law obtained by the proposed algorithm 

 
By applying the proposed LMI-based Genetic 

algorithm the following values of the three degrees 
of freedom are obtained 
 
S = 2.1663 T = 1.2036 d = 2.4998 
 

The corresponding guaranteed cost control law 
is: 

( ) ( )txtu ⎥
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1.8963-0.3127-1.59561.2727
3.88762.4866 0.6334 2.5665-

 
The guaranteed cost obtained by the proposed 

method is lower than those of the previous methods 
(Kosmidou, 1996, Fischman, 1996), and it is more 
close to the optimal one, as illustrated in the 
following Table 1. For the computation of the 
guaranteed cost, equation (7) is used with initial 
condition 

[ ]′= 11110x  

Table 1: Guaranteed cost and gain norms for the case of 
the three methods 

Method Guaranteed 
Cost Norm of the gain 

Proposed 4.8978 5.7141 
Fischman’s 5.8000 3.0400 
Kosmidou’s 5.2591 4.4038 

Optimal 
Control 3.4890 2.0545 

 
In Figure 3, the landscape of the proposed 

genetic algorithm is presented in three cross 
sections. The combination of these three landscapes 
consists the entire search space of the algorithm. 

Also, in Figure 4, the poles of open system and 
the closed loop system, for a range of uncertainties 
(|ai(t)|≤1, |bi(t)|≤1) applying the control law derived 
by using the proposed method and the method of 
(Fischman, 1996) are depicted. As can be seen, by 
this figure, the open system is unstable, while in the 
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case of the proposed law, is more stable than the one 
obtained by (Fischman, 1996). 

Finally, the state responses of the closed 
systems, in the case of the proposed law and the 
(Fischman, 1996) one, are presented in Figure 5. 
This figure points, that the proposed gain feedback, 
behaves quite more efficiently than the other, since 
the responses are smoother. 

 

 

(a) 

 

(b) 
 
Figure 5: State responses (a) proposed method and (b) 

Fischman’s method 

6 CONCLUSIONS 

A novel method of finding a robust control law, that 
guarantees an upper bound of a quadratic 
performance index, has been presented in this paper. 

The proposed method is based on the 
combination of the Genetic Algorithms and the LMI 
optimization tool (Gahinet, 1995). It makes use of an 
LMI approach to the guaranteed cost, presented in 
(Fischman, 1996), of the form of an objective 
computation method. 

The LMI proposed in (Fischman, 1996), is 
modified to find only an optimal matrix P, while the 
rest of free parameters are derived through a 
genetically processed algorithm. 

The results are very promising, since the resulted 
guaranteed cost is lower than previous ones 
(Kosmidou, 1996, Fischman, 1996), with an 
additional quite better system behavior, in the sense 
of stability. 
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