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Abstract: In this paper we provide a different way to estimate matrices B and D, in subspace identification algorithms.
The starting point was the method proposed by Van Overschee and De Moor (1996) – the only one applying
subspace ideas to the estimation of those matrices. We have derived new (and simpler) expressions and we
found that the method proposed by Van Overschee and De Moor (1996) can be rewritten as a weighted least
squares problem, involving the future outputs and inputs.

1 INTRODUCTION

In subspace identification methods, there are two
main steps: in the first step, a basis for the column
space of a certain matrix, the extended observability
matrix, is determined from the input-output data. The
dimension of this subspace is equal to n, the order of
the system to be identified. If we know the extended
observability matrix, then we can estimate (explicitly
or implicitly) the state sequence.

In the second main step of these algorithms, the
system matrices are estimated. Several strategies ex-
ist, in order to estimate A and C and B and D, but
we will focus our attention in the one proposed by
Van Overschee and De Moor (van Overschee and
de Moor, 1996), for the algorithm R-MOESP (Ro-
bust MOESP). We show in this paper that, for the es-
timation of B and D matrices, the R MOESP method
can be simplified, thus allowing a significant improve-
ment on the numerical efficiency of the estimation
procedure, without any loss of accuracy.

On the other hand, we manage to relate the R-
MOESP algorithm to a different (geometric) approach
(?), thus proving that these two different approaches
are not that different – which can be seen as an ex-
tension of .the unifying theorem, for the estimation of
B and D matrices step, in Subspace Identification Al-
gorithms. This kind of relation has already been sug-
gested for the matrices A and C (Chiuso and Picci,
2001) but has never been proposed for the estimation
of matrices B and D, since the two approaches appear

to be very different.
In this paper, we will focus our attention to the

problem of estimating matrices B and D, knowing the
extended observability matrix and matrices A and C.
Therefore, the paper is organized as follows: in sec-
tion 2, we introduce the subspace identification prob-
lem, notation, main concepts behind subspace meth-
ods and we describe the technique proposed by Van
Overschee and De Moor (van Overschee and de Moor,
1996) for the estimation of B and D. In section 3, we
provide new expressions for the estimation of the in-
put matrices and in section 4 we show that the tech-
nique presented by Van Overschee and De Moor (van
Overschee and de Moor, 1996) is merely a projection
on the null space a certain matrix. Finally, in section
5, some simulation results are introduced and, in sec-
ton 6, the conclusions are presented.

2 BACKGROUND

2.1 Subspace Identification Problem

Subspace Identification algorithms aim to estimate,
from measured input / output data sequences ({uk}
and {yk}, respectively), the system described by:

{
xk+1 = Axk +Buk +Kek

yk = Cxk +Duk + ek
(1)

E
[
epe

T
q

]
= Reδpq > 0 (2)
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where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
l×n, D ∈

R
l×m, K ∈ R

n×l and xk ∈ R
n. The sequence

{ek} ∈ R
l is a white noise stochastic process and the

input data sequence is assumed to be a persistently ex-
citing quasi-stationary deterministic sequence(Ljung,
1987)

2.2 Block Hankel Matrices

The notation used will be based on the notation of Van
Overschee and De Moor(van Overschee and de Moor,
1996): U and Y are two block Hankel matrices built
with 2i row-blocks and j column-blocks (for N , the
number of measurements, greater or equal than 2i +
j − 1:

U =




U(1)

...
U(2i)


 ∈ R

2mi×j , Y =




Y(1)

...
Y(2i)


 ∈ R

2li×j

where U(k) and Y (k) are the k − th row-blocks of,
respectively, U and Y . Matrix U can be partitioned
as:

Up =




U(1)

...
U(i)


 , Uf =




U(i+1)

...
U(2i)




Up+ =




U(1)

...
U(i+1)


 , Uf− =




U(i+2)

...
U(2i)




where the subscripts p and f denote ”past” and ”fu-
ture”, respectively.

The same happens to matrix Y and to the in-
put/output data matrices: H =

[
U
Y

]
, Hp =

[
Up

Yp

]
,

Hp+ =
[

Up+

Yp+

]
, HU =

[
Hp

Uf

]
and H+U− =

[
H

p+

Uf−

]
.

When the input-output data is organized into matri-
ces with this special block Hankel structure, then (1)
can be written as

Yf = ΓiXi +Hd
i Uf + Ef (3)

Yf− = Γi−1Xi+1 +Hd
i−1Uf− + Ef− (4)

and also as[
X̂i+1

Y(i)

]
=

[
A B
C D

] [
X̂i

U(i)

]
+

[
ρw
ρv

]
(5)

where:

1. Matrix X̂i is the state sequence generated by a bank
of Kalman filters, working in parallel on each of the
columns of the block Hankel matrix of past inputs
and outputs:

X̂i =
[
x̂i+1|1 . . . x̂N−i+1|N−2i+1

]

X̂i+1 =
[
x̂i+2|2 . . . x̂N−i+2|N−2i+2

]

2. Γi ∈ R
li×n is the extended observability matrix

(since i> n), where the subscript i denotes the num-
ber of row-blocks

3. Hd
i ∈ R

li×mi is a block Toeplitz matrix, built with
Markov parameters

4. ρwk = x̂k+1−Âx̂k−B̂uk, ρvk = yk−Ĉx̂k−D̂uk

and
[
ρw
ρv

]
=

[
ρwi ... ρwi+j−1

ρvi ... ρvi+j−1

]

2.3 The projection theorem

The main idea behind the subspace theory is stated
in the ”projection theorem” (Van Overschee and de
Moor, 1996): given (3) and (4) then, under certain
conditions, there is a connection between an esti-
mated kalman filter state sequence and the orthogo-
nal projection of the row space of Yf (future outputs)
into the row space of the past inputs, past outputs and
future inputs row space Uf :

Zi = Yf /HU = ΓiX̂i +Hd
i Uf (6)

Zi+1 = Yf−/H+U− = Γi−1X̂i+1 +Hd
i−1Uf−(7)

where A/B denotes an orthogonal projection of the
row space of A into the row space of B and the state
sequences are given by

X̂i = [ θ1 θ2 θ3 ]




X̂0

Up

Yp


 (8)

X̂i+1 = [ α1 α2 α3 ]




X̂0

Up+

Yp+


 (9)

where θ1, θ2, θ3, α1, α2, α3 are functions of the sys-
tem matrices, and X̂0 a function of U . In fact, as the
inputs are possibly correlated, one can obtain infor-
mation about X̂0 from the inputs U , by projecting the
initial state sequence X0 (exact but unknown) into U :
X̂0 = X0/U. A similar relation has been establish be-
tween a second estimated state sequence X̃i and the
oblique projection of the row space of Yf (future out-
puts), along the future inputs row space Uf , into the
row space of the past inputs and outputs Hp:

Oi = Yf /Uf
Hp = ΓiX̃i (10)

Oi+1 = Yf− /Uf−Hp+ = Γi−1X̃i+1 (11)

There is a slight difference between Zi and Oi. In
fact, Oi can be computed from Zi by just ignoring
the information given by Uf . The consequences are
clear: part of the information required to estimate X̂0
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is no longer available so, the estimated state sequence(
X̃i

)
is different from X̂i. Although X̃i and X̂i are

not the same estimates, they are still very similar and,
actually, under some special conditions (i → ∞ or
{uk} is white noise or the system is purely determin-
istic) they are the same. This approximation of the
state sequences is used to obtain the more elegant and
simple algorithm presented in next section. Unlike the
algorithm that considers the “exact” Kalman state es-
timates by implementing some orthogonal projections
(unbiased for j → ∞), this approximate algorithm is
biased for finite i, except under certain special cases
(Van Overschee and De Moor, 1996)

2.4 Subspace Identification
Algorithms

There are two main steps in subspace identification
algorithms:

1. determine the model order n and estimate the ex-
tended observability matrix through the singular
value decomposition of a weighted oblique projec-
tion, WLOiWR, and

2. solve a least squares problem, in order to obtain the
state space matrices:

min

∥∥∥∥
[
X̂i+1

Y(i)

]
−

[
A B
C D

] [
X̂i

U(i)

]∥∥∥∥
2

F
(12)

where ‖Ξ‖F denotes the Frobenius norm of matrix
Ξ.

In the first step, since Van Overschee and De Moor
(van Overschee and de Moor, 1996) proved that (10)
is a valid approximation, then one can estimate the ob-
servability matrix from the singular value decomposi-
tion of Oi. Since rank(Γi) = n (we assume {A,C}
observable), then rank(Oi) should also be n, and

Oi = USV T = (13)

= [ Un Un⊥ ]

[
Sn 0
0 0

] [
V T

n

V T
n⊥

]
=

= UnSnV
T
n

where Oi ∈ R
li×j , S ∈ R

li×j (diagonal matrix with
the singular values of Oi) , U ∈ R

li×li, V ∈ R
j×j

(U and V are orthonormal matrices), Un ∈ R
li×n,

Sn ∈ R
n×n, V T

n ∈ R
n×j , rank(Oi) = n. The or-

der n of the system should, therefore, be determine
by the number of the nonzero singular values of Oi ,
dim(Sn) (van Overschee and de Moor, 1996). How-
ever, in many practical situations, when the measure-
ments are noise corrupted, it can not be straightfor-
ward to distinguish the ”nonzero” from the ”zero” sin-

gular values – one must then make a decision by com-
paring the values or by assuming different orders and
comparing simulation errors.

As the column spaces of Γi and UnS
1/2
n are the

same, we compute

Γi = UnS
1/2
n (14)

and then Γi=Γi−1, by removing the last l rows from
Γi.

In CV A and MOESP approaches, WL and WR

are given by

WL WR

CV A
(
YfΠUf

⊥Y T
f

)−1/2

ΠUf
⊥

MOESP Ili ΠUf
⊥

where ΠUf
⊥ =

(
Ij − U+

f Uf

)
.

Knowing an estimate of Γi

(
Γi = UnS

1/2
n

)
, ma-

trices A and C are obtained by solving a linear equa-
tion, in a least squares sense:
[
Γ+

i−1Zi+1

Y(i)

]
=

[
A
C

KBD

] [
Γ+

i Zi

Uf

]
+ ρ (15)

Lopes dos Santos and Martins de Carvalho (dos San-
tos and de Carvalho, 2004) have shown that these es-
timates and the estimates of A and C produced by the
shift-invariant property of Γi are the same. The ma-
trix KBD is then used to estimate B and D, since

KBD =

[
KA

KC

]
= [ K1 ... Ki ] = (16)

=

[
B Γ+

i−1H
d
i−1

D 0

]
−

[
A
C

]
Γ+

i H
d
i =

=

[
N1

[
D
B

]
... Ni

[
D
B

] ]

Equation (16) can be rewritten as:
[

K1

...
Ki

]
=

[
N1

...
Ni

] [
D
B

]
(17)

and B and D estimated in the least squares
sense. Lopes dos Santos and Martins de Carvalho
(dos Santos and de Carvalho, 2003) have shown
that KA can be written as KA = KpKC =(
−A

(
Γ

T

i Γi

)−1

CT

)
KC . Therefore, we can work

only with

KC(B,D) =

[
Kp

Il

]+
KBD = (18)

=

[
NC1

[
D
B

]
... NCi

[
D
B

] ]
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where

NC1 = [ Il − LC1 −LC2 ... −LCi ]Gi

NCk = [ −LCk ... −LCi 0 ]Gi (k > 1)

LA = [ LA1 LA2 ... LA ] = AΓ+
i

LC = [ LC1 LC2 ... LCi ] = CΓ+
i

Gi =

[
Il 0
0 Γi−1

]

Equation (18) can be rewritten as:
[

KC1

...
KCi

]
=

[
NC1

...
NCi

] [
D
B

]
(19)

and B and D estimated in the least squares sense.

When matrix
(
UfU

T
f

)
is almost a singular matrix,

(17) provides bad results. It is better then to avoid
the explicit estimation of KBD and obtain B and D
directly from:

P =

([
Γ+

i−1Zi+1

Y(i)

]
−

[
A
C

]
Γ+

i Zi

)
(20)

= [ K1 K2 ... Ki ]Uf =

=
i∑

k=1

KkUk =
i∑

K=1

Nk

[
D
B

]
Uk

where Uk ∈ R
m×j is the k-th block row of Uf .

In order to determine D and B, one has to apply the
vector operation, vec(.), and the Kronecker product,
⊗, to (20). The new equation can now be solve in the
least squares sense:

vec(P ) =

(
i∑

k=1

(
UT

k ⊗Nk

)
)
vec

([
D
B

])
(21)

3 ESTIMATION OF MATRICES B
AND D

In this section, we will analyze both sides of (20).
First, we will consider matrix P and the relation be-
tween the orthogonal projections Zi and Zi+1, and
then provide a new expression for P. Then, we will
consider matrix KBD, also providing a new expres-
sion for this matrix. Finally, we will relate P and
KBD.

3.1 The orthogonal projections

Theorem 1 Given matrices A ∈ R
n×m, B ∈

R
b×m, C ∈ R

c×m then

A/[
B
C

] −A/C = A/(B/
C⊥)

= (22)

= A/CBΠC⊥ (23)

Proof. We can define the first orthogonal projection
as

A/BC = A
[
BT CT

] [ BBT BCT

CBT CCT

]−1 [
B
C

]
=

= A
[
BT CT

] [ ∆−1 γ1

γ2 ϕ−1

] [
B
C

]
=

= [θB θC ]

[
B
C

]

where, by the Matrix Inversion Lemma (Kailath,
1980),

∆−1 =
(
BΠC⊥B

T
)−1

ϕ−1 =
(
CCT

)−1
+
(
CCT

)−1
CBT

×
(
BΠC⊥B

T
)−1

BCT
(
CCT

)−1

γ1 = −
(
BΠC⊥B

T
)−1

BCT
(
CCT

)−1

γ2 = −
(
CCT

)−1
CBT

(
BΠC⊥B

T
)−1

On the other hand,

A/BC = A/BC +A/CB (24)

where

A/BC = θCC = A
(
BT γ1 + CTϕ−1

)
C (25)

and, after some manipulation,

A/BC = (A−A/CB)ΠC (26)

Therefore,

A/BC = A/C +A/CB (I −ΠC) (27)

Corollary 2 Given Zi = Yf/HU and Zi+1 =
Yf/H+U− , then

Zi+1 = Zi +4Zi = Zi + Yf/(Y(i)/HU⊥)
(28)

Proof. Since the rowspace of H+U− is spanned by

the rows of
[

HU
Y (i)

]
, we can explore (27), with A =

Yf , B = HU, C = Y(i).
Another way to prove this is through the LQ de-

composition of H+U− :

[
UH
Y(i)

]
=

[
LUH 0 0
LY 1 LY 2 0

] [ QLUH

QLY

QL⊥

]
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where

Yf .Q
T
L =

[
Y(i)

Yf−

]
QT

L =

= [BUH BY BUHY p]

=

[
bUH bY bUHY p

BmUH BmY BmUHY p

]

In fact,

Zi =

[
bUHQLUH

BmUHQLUH

]
(29)

Zi+1 =

[
bUH bY

BmUH BmY

] [
QLUH

QLY

]
(30)

4Zi =

[
bY QLY

BmY QLY

]
= (31)

= Yf/(Y(i)/UH⊥)
= Zi+1 − Zi

3.2 Simplifying matrix P

Theorem 3 Given (1), where {A,C} is observable
and A is non-singular, then

P =

[
Γ+

i−1Zi+1

Y(i)

]
−

[
A
C

]
Γ+

i Zi (32)

can be rewritten as:

P =M Zi +N 4Zi (33)

where

Zi = Yf/UH = Yf/[
HP

Uf

] (34)

4Zi = Yf/Ŷ(i)
= Yf/(Y(i)/UH⊥)

(35)

and

N =

[
0 Γ+

i−1
Il 0

]
(36)

M =

[
−APiC

T (Pi−1 −APiA
T )ΓT

i−1

Il − CPiC
T −CPiA

TΓT
i−1

]

(37)

Proof. Since we assume {A,C} to be observable, Γi

and Γi−1 are full column rank matrices and we can
replace their pseudo-inverse expressions with

Γ+
i−i =

(
ΓT

i−1Γi−1

)−1
ΓT

i−1 = Pi−1Γ
T
i−1(38)

Γ+
i =

(
ΓT

i Γi

)−1
ΓT

i = PiΓ
T
i (39)

On the other hand, if A is a non-singular matrix, then,
by the shift-invariance property of Γi,

A = Γ+
i−1Γi (40)

with Γi = [ 0 Il ] Γi, and

Pi−1 = AP iA
T (41)

Therefore,

P =

[
PA

PC

]
= (42)

=

[
Pi−1Γ

T
i−1Zi+1 −APiΓ

T
i Zi

Y(i) − CPiΓ
T
i Zi

]
=

=

[
0 Pi−1Γ

T
i−1

Il 0

]
Zi+1 −

[
A
C

]
PiΓ

T
i Zi

PC = [Il 0]Zi+1 − CPiΓ
T
i Zi = (43)

= [Il 0]Zi+1 −
[
CPiC

T CPiA
TΓT

i−1

]
Zi

=
[
Il − CPiC

T − CPiA
TΓT

i−1

]
Zi +

+ [Il 0]4Zi

where [Il 0]4Zi = 4ZYi = Y(i)/UH⊥ , and

PA =
[
0 Pi−1Γ

T
i−1

]
Zi+1 −APiΓ

T
i Zi = (44)

=
[
−APiC

T (Pi−1 −APiA
T )Γi−1

]
Z +

+
[
0 Γ+

i−1

]
4Zi

Then,

P =

[
−APiC

T (Pi−1 −APiA
T )ΓT

i−1

Il − CPiC
T −CPiA

TΓT
i−1

]
Zi

+

[
0 Γ+

i−1
Il 0

]
4Zi

3.3 Simplifying KBD

Theorem 4 Given matrix KBD, defined in (16), then

KBD =MHd
i (45)

where M was introduced in (37).

Proof. As mentioned before,

KBD =

[
B Γ+

i−1H
d
i−1

D 0

]
−

[
A
C

]
Γ+

i H
d
i (46)

Since Hd
i can be given by

Hd
i =

[
D 0
Γi−1B Hd

i−1

]
=

[
ϕi

0
Hd

i−1

]

the expression (46) can be expressed as a function of
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ϕi and Hd
i−1:

KBD =

[
K11 K12

K21 K22

]
=

=

[
Ma Mb
Mc Md

] [
D 0
Γi−1B Hd

i−1

]

where

K11 = B −APiΓ
T
i ϕi

K12 =
(
Pi−1Γ

T
i−1 −APiΓ

T

i

)
Hd

i−1

K21 = D − CPiΓ
T
i ϕi

K22 = CPiΓ
T

i H
d
i−1

Ma = −APiC
T

Mb = Pi−1Γ
T
i−1 −APiΓ

T

i = (Pi−1 −APiA
T )ΓT

i−1

Mc = Il − CPiC
T

Md = −CPiΓ
T

i = −CPiA
TΓT

i−1

A different way to prove this result can be found in

(Delgado et al., 2004).

3.4 The estimation of B and D

Theorem 5 The equation (20) can be written as

MYf =MHd
i Uf (47)

where

M =

[
A(P i − Pi)
−CPi

] (
ΓT

i + (48)
[
−CT (CPiC

T )−1 0
])

=

[
−APiC

T (Pi−1 −APiA
T )ΓT

i−1

Il − CPiC
T −CPiA

TΓT
i−1

]

Proof. We start by assuming that M can be written as:

M =

[
A
(
P i − Pi

)

−CPi

]
[ N1 N2 ] (49)

and then will prove that

N1 = CT
(
Il − (CPiC

T )−1
)

(50)

N2 = ATΓT
i−1

In fact, when A is a non-singular matrix,

Pi−1 −APiA
T = A

(
P i − Pi

)
AT , (51)

and, therefore,
[
A
(
P i − Pi

)

−CPi

]
N2 =

[
(Pi−1 −APiA

T )ΓT
i−1

−CPiA
TΓT

i−1

]

On the other hand, since

−CPiN1 = −CPiC
T
(
Il − (CPiC

T )−1
)
=

= −CPiC
T + Il

and

(−APiC
T ) = (−AP iC

T )(Il − CPiC
T )

A
(
P i − Pi

)
= (−AP iC

T )(−CPi)

we obtain

A
(
P i − Pi

)
N1 = (−AP iC

T ) (−CPi)N1 =

= (−AP iC
T )(Il − CPiC

T ) =

= −APiC
T

If we consider all the previous results, we can see
that knowing estimates of matrices A, C and ΓT

i al-
lows the estimation of Hd

i , in the least squares sense,
and therefore, the estimation of B and D.

4 ORTHOGONAL PROJECTION
INTO THE NULLSPACE OF Γ

T

i

An analysis of matrix M shows us that,

M = ΥCPi

(
Ω+ ΓT

i

)
(52)

where

Υ =

[
AP iC

T

−Il

]
(53)

Ω =
[
−CT (CPiC

T )−1 0
]

(54)

is such that

MYf = M(ΓiXf +Hd
i Uf + Ef ) = (55)

= MHd
i Uf +MEf (56)

which means that

rowspace(M)⊥colspace(Γi) (57)

In fact,

M.Γi = ΥCPi

(
Ω+ ΓT

i

)
Γi = (58)

= Υ
(
CPiΩΓi+ CPiΓ

T
i Γi

)
=

= Υ
(
−CPiC

T (CPiC
T )−1C + C.In

)
=

= Υ(−C + C) = 0

This means that the rows of

CPi

([
−CT (CPiC

T )−1 0
]
+ ΓT

i

)

are orthogonal to the columns of Γi ¥
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5 SIMULATION RESULTS

It was considered the following system with two in-
puts and two outputs, represented in the forward in-
novation model:{

xk+1 = Axk +Buk +Kek

yk = Cxk +Duk + ek
(59)

E
[
epe

T
q

]
= Reδpq > 0 (60)

where:

A =




0.603 0.603 0 0
−0.603 0.603 0 0
0 0 −0.603 −0.603
0 0 0.603 −0.603




B =



1.1650 −0.6965
0.6268 1.6961
0.0751 0.0591
0.3516 1.7971




C =

[
0.2641 −1.4462 1.2460 0.5774
0.8717 −0.7012 −0.6390 −0.3600

]

D =

[
−0.1356 −1.2704
−1.3493 0.9846

]

K =




0.2820 −0.3041
−0.7557 0.0296
0.1919 0.1317
−0.3797 0.6538




Re =

[
0.1253 0.1166
0.1166 0.2170

]

As inputs, two white noise sequences with 1000
samples were generated.

Figure 1: Singular values (MOESP approach).

Comparing the results obtained with the proposed
and the original algorithms, we have similar values,
for the matrices, frequency responses (figures 2 and
3) and for the simulation errors (van Overschee and
de Moor, 1996):

εold =

[
15.0104
14.6752

]
(%)

εnew =

[
15.0027
14.6731

]
(%)

Figure 2: The frequency response of the original and the
estimated system (MOESP approach).

Figure 3: The frequency response of the original and the
estimated system (proposed approach, Van Overschee e De
Moor-based).

6 CONCLUSIONS

In this paper we describe an alternative approach for
the estimation of matrices B and D in subspace iden-
tification. If we consider the methods used nowa-
days, both ”simulation error method” and ””predic-
tion error method” do not apply the subspace ideas,
since they ”go back to the data” (van Overschee and
de Moor, 1996). As to the robust method proposed
by Van Overschee and De Moor (van Overschee and
de Moor, 1996), it is the slowest of the existing meth-
ods, due to its numerical complexity. We have shown
that this robust subspace method can be just expressed
as an orthogonal projection of the future outputs on
the orthogonal complement of the column space of
the extended observability matrix – thus providing a
new sort of simpler (but equally accurate) subspace
algorithms.
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