
Security Aspects in Virtual and Remote Laboratories:
Implementations in the Virtual Electro Lab project

Silviu Leahu, Sorin Moraru, Adrian Pelcz, Liviu Perniu

Faculty of Electrical Engineering and Computer Science,
"Transilvania" University of Brasov, Politehnicii street, Brasov, Romania

Abstract. When it comes about accessing an application remotely, that is from
another computer than that where the application resides, the security should
always be of concern. Because the connection between the two computers is
done through a physical space, on which we may not have any control, whether
that connection is through wires or wireless, we must be on guard of any
possible identity and information stealing. This paper deals with the security
aspect encountered in any remotely communication between two or more
computers, connected among them through a physical or wireless connection. It
explains the theoretical base and the implementation of these aspects in “Virtual
Electro Lab”.

1 INTRODUCTION

When it comes about accessing an application remotely, that is from another
computer than that where the application resides, the security should always be of
concern. Because the connection between the two computers is done through a
physical space, on which we may not have any control, whether that connection is
through wires or wireless, we must be on guard of any possible identity and
information stealing. Thus, the matter of secure communication boils down to
authentication, proving someone is who he claims to be; integrity, the exchanged data
between the computers is unmodified on its course; and privacy, the exchanged data
between the computers cannot be seen by any third party[1].

2 AUTHENTICATION

Any communication is realized between two or more subjects. Each of them must
identify itself to the others, in brief or in details, before being able to participate to
that communication. After that, a continuously switch between emitter and receptor
roles takes place among the subjects.

In our case we have a communication between the client computer which makes
requests and two servers which respond: the LMS server and the VEL server.

Leahu S., Moraru S., Pelcz A. and Perniu L. (2004).
Security Aspects in Virtual and Remote Laboratories: Implementations in the Virtual Electro Lab project.
In Proceedings of the First International Workshop on e-Learning and Virtual and Remote Laboratories, pages 137-143
DOI: 10.5220/0001152001370143
Copyright c© SciTePress

2.1 The client authentication

In order to maintain a communication with more than one client, the application uses
a session mechanism, meaning that it allocates resources (variables, threads, memory
etc.) for each one of them, and an identification which distinguishes one client from
the other. Every time a client makes a request, it has to reveal its own session ID,
letting the server know its identity and the stage of the communication.

In order to initiate a communication, the client must send his username and
password to the LMS server. The server will verify the existence of this user into the
database and depending of the result, will allow the client to connect to the features of
the application or not. In case the login succeeds, the server allocates new resources
for this new client and sends the ID of this newly created session back to the client.
As mentioned, the client will use this session ID every single time it makes a request
to the server, identifying itself among all others connected users.

Fig. 1. Login page for the LMS application.

The use of the pair username / password has another reason too. It allows the access
of the client to different features of the application, depending of his role:
administrator, teacher, student etc. (fig. 1).

The VEL server has not a login mechanism of its own, but it will use the login
feature of the LMS server. Thus, if a client accesses the VEL server without passing
through the checking made by LMS through username/password pair, it will be
rejected. The VEL server knows if a client has successfully passed the login, by
looking at the session ID provided by the client along with the request.

136

2.2 The server authentication

Not only must the client identify itself, but also the server. Because the application of
VEL is very complex, a part of it is executed on the client machine. For this reason, a
Java Applet has been chosen as solution. Within it several computing operations are
performed on the client part. In this way, we can reduce the network traffic, because
instead of sending multiple requests to the server for different manipulation of data,
we can receive the data in the Java Applet client and then all the wanted actions
regarding that set of data can be done locally, without any new request to the server.

But this facility offered by the applet raises another issue. The Java Applet, being
capable to execute commands on the client machine can executed unwanted
commands in order to harm the client's computer.

Because of this potential problem, an applet is not allow to perform freely, but
instead it is subject to a so-called “sandbox”, that is a delimited set of permitted
actions, anything else outside this sandbox not being available for execution. Among
the actions prohibited are accessing client's files, opening channels of
communications to other computer than that where the Applet originated etc.

However, if an application really needs to access some resources on the client
machine, such as the file system, the printer etc., there is a mechanism through which
this can be accomplished. This mechanism is called “Applet signing”. By signing it,
an applet requires at its initialization the acceptance from the user to execute actions
outside the sandbox[2].

Therefore, when one loads into a browser a Java Applet, he must know who the
server is in order to make a clear judgment about if he trusts it or not to let it run
commands on his computer. That brings us to the server authentication matter. For
this very reason a server must be able to identify itself in order to make the client trust
that it is who it claims it is and allowing the clients deciding if they trust it or not. In
this way, a third party server cannot claim to be someone else for deceiving the users
and running malicious code on their machines.

2.2.1 Certificates

The first thing in authentication is the creation of a certificate that describes the entity
of the claimer. It is made of the main details of the entity: name of person, company
name, department name, location, country. This would be the equivalent of an ID of a
person in the real world.

Now, this certificate must be authenticated by some authority in the domain, the
same way, in the real world, an ID or a driving license is issued by an authority. In
case of digital signing, there are some companies like DeutschePost, Thawte, Verisgn
or Ecquifax each one known as Certificate Authority. These companies are entitled to
validate those certificates by priorly verifying the credentials of the claimer. Then, it
applies its own signature over the entity's certificate, thus validating it.

137

2.2.2 Packing the Java Applet

The next thing after having the signed certificate, is packaging all the components of
the Applet in order to signing it. This is done with the JAR tool (fig. 2).

Fig. 2. Java Archive creation (JAR).

2.2.3 Signing the Applet

The third step represents the actual signing of the Applet, now packed into a Java
ARchive. The tool used for the operation is signtool, provided with every Java
Development Kit.

Fig. 3. Certificate creation and Java Applet signing.

We have built a script that creates a certificate (the zone marked) and that signs the
JAR file (marked with green) (fig. 3).

138

When a user loads a web page that contains a signed applet, a warning is presented
to the user (fig. 4).

The user can see the details about the certificate by clicking “More Details”.

Fig. 4. Warning of loading a signed applet, which requires additional privileges for the
execution of commands outside the sandbox.

3 DATA INTEGRITY

In every communication, especially when we put a lot of trust on the data received
and use it as base for our decision-making process, the integrity of data is very
important. This means that the data we send and received must not be altered in any
way during transmission over the network and arrives exactly as it was sent.

This desideratum is achieved with algorithms that takes a content and calculates a
so-called “digital fingerprint”. This mark uniquely identifies a content of bytes,
whether that content is pure text, an image, a ZIP file etc. If someone tries to change
even only one bit from this content, the digital fingerprint will significantly differ
from the previous one. Thus, any message can be verified regarding its original state
by calculating its digital mark upon its arrival and then comparing it with the original
one. If they are different, that means that the message was modified along the network
it passed.

Among the most used and secure algorithms for generating the message digest are
MD5 and SHA1.

4 COMMUNICATION PRIVACY

We have seen how to authenticate an entity present into a communication process,
letting the others participants knowing its identity and, also, how we can assure that

139

our sent or received messages have not been in any manner modified along the way to
their destinations.

But none of those things does address the issue of privacy. If anyone is able to
“listen” the communication can have access to all the data sent back and forward,
even if he doesn't altered the message, or sending his own messages. It can be a
“passive” participant.

That is why we need another mechanism involved and this is the encryption.

The encryption represents the process through which a content can be transformed
into a collection of codes which doesn't represents anything intelligible. The
transformation is based again on algorithms and it is reversible – from this collection
of codes we can retrieve the original message.

There are two ways of achieving an encryption, using the single-key approach and
public/private keys approach.

4.1 The single-key or the symmetric encryption

The single-key approach is based on one key with which the content will be
transformed. Then this encrypted message is transmitted over a network and
decrypted with the same key by the intended recipient.

No one can get the original message unless he possesses the key used for
encryption. That is why the sending of the key from one recipient to other must be
done in a very secure way. The unauthorized access to it, compromises the secure of
the whole communication.

4.2 Public/private keys pair or the asymmetric encryption

Its name of asymmetric encryption is due to the fact that one key is used for
encrypting the message and another for decryption. The key for encryption is called
the public one and is generally available in the Internet. With this key, anyone can
encrypt a message to the intended recipient, of whom the public key belongs, and
only that recipient can decrypt the message by using its private key, which must be
very securely stored. The disclosure of this private key brings to compromising the
communication to this recipient, because anyone who possesses it can now gain
access at the data beneath, primarily intended solely for him.

5 CONCLUSIONS

The security aspects of applications become more and more a crucial issue, due to the
growing instabilities and attacks in the networks today. The solution to this matter
resides, as always has, in the trade-off between the features and the security. If we
want to have more and more facilities for the user, usually that means a downgrade to
the tidiness of security, and vice versa.

140

We can't have an application made only with one of these two ingredients. An
application without any security is hard to respond to the necessity of the user, due to
this very lack of trust in the data processed. On the other hand, a strictly controlled
application, without any concern over the facilities for the user, has no meaning
because of the lack of addressing the specific functional needs.

REFERENCES

1. http://ecommerce.mit.edu/class/private/crypto_summary.html
2. http://java.sun.com/developer/onlineTraining/Security/Fundamentals/Security.html
3. Horstmann, C., Cornell, G., Core Java 2 (vol 1. and 2), Sun Microsystems Press, 2000
4. http://java.sun.com/security
5. http://www.openssl.org

141

