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Abstract: This paper provides an in-depth analysis and comparison of the arithmetic coding stages in the latest 
compression standards: JPEG 2000 and H.264/AVC for image and video systems, respectively. An impact 
of algorithm differences on hardware architecture is considered. Evaluation results show throughput 
requirements that real-time multimedia applications have to satisfy. 

1 INTRODUCTION 

Coding efficiency is the one of the most important 
features of all compression systems. Towards this 
goal, they follow a general schema of three main 
consecutive stages: modelling, quantization and 
coding. The latter stage exploits some well-known 
techniques, along with variable length codes and 
arithmetic coding, which map input symbols into 
binary sequences. The produced code streams 
achieve shorter lengths with respect to their source 
representation by making them dependent on 
occurrence probabilities, as Shannon’s theorem 
claims. Arithmetic coders are able to attain better 
compression efficiency due to their property to 
effectively map input data onto binary sequences 
with fractional accuracy of lengths for entropy 
approximation. Adaptation to local statistics 
provides a path to further reduction of code stream 
lengths. However, these properties imply much 
higher computational complexity. JPEG 2000 
(ISO/IEC 15444-1, 2000) and H.264/AVC (ISO/IEC 
14496-10, 2003) are standards, where the Context 
Adaptive Binary Arithmetic Coding (CABAC) is the 
part of the compression scheme. Although CABAC 
bases on the same general principles in both 
standards, there are some substantial differences 
between them.  

The comparison of the standards provided in 
(Marpe et. all, 2003-Oct.) focuses mainly on the 
compression efficiency providing complexity issues 
rather in broad outline. CABAC algorithms, as they 
stand, are extensively described in related works for 

both JPEG2000 (Taubman et. all, 2002) and 
H.264/AVC (Marpe et. all, 2003-July), (Marpe et. 
all, 2003-Sept.). In case of JPEG 2000, the 
bottleneck of the system arises from the entropy 
coding stage along with the arithmetic coder. Some 
optimisation methods were reported in literature and 
they lend themselves to the newest video 
compression schema. On the other hand, existing 
differences necessitate unique approaches. In this 
paper, we emphasize design details in terms of both 
hardware complexity and speed. Moreover, 
throughput evaluations are provided to find speed 
requirements for real-time applications.  

The remainder of the paper is organized as 
follows: Section 2 illustrates consecutive stages of 
the CABAC that are deeply analysed in subsections 
2.1 – 2.4. Subsection 2.5 addresses bypass mode 
variants. System-level conditions for arithmetic 
coding are given in Section 3.1. The following ones 
provide test conditions, evaluated requirements for 
processing speed and discussion combining them 
with hardware design methods; finally, Section 4 
concludes the work. 

2 MAIN STAGES OF THE CABAC 

In terms of basic operations while executing the 
CABAC algorithm, we may distinguish four main 
stages. Fig. 1 shows their causal arrangement what 
suggest how to implement the algorithm in hardware  
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Figure 1: Division of the arithmetic coding algorithm in terms of casual relationships allows pipelined architectures. 
Here, Plps denotes probability estimate of LPS, SN – renormalization shift number, C – the base before renormalization, 

mps/lps – selects between MPS and LPS. The dashed line identifies optional feed back (JPEG2000). 
  

to obtain a high throughput. First stage performs 
updating the probability state array according to pre-
defined transaction rules. Each element of this state 
array corresponds to one of the possible input 
contexts, CX, and consists of two fields: the index 
and the most probable symbol (MPS) value. The 
index value identifies probability estimate of the 
least probable symbol (LPS). An estimate for a 
given context is forwarded to the second stage to 
subdivide the current probability interval (A) into 
two ones, as illustrated in Fig. 2 and Fig. 3. 
Depending on LPS/MPS coding, one of them is 
selected as a new one, and renormalized to desired 
range by shifting left, if needed. The third stage 
manages the interval base register (C - lower 
endpoint). This register is increased when the upper 
subinterval is selected as a new one. Successive 
renormalization shifts for the A register trigger the 
analogous behaviour of the C one, which releases 
code bits from its MSB positions. The bits are 
collected in the last stage into bytes and output to 
external functional blocks to form a final 
compressed stream. 

2.1 Probability state updating 

In JPEG 2000 and H.264/AVC, there are 
respectively 19 and 399 possible contexts defined 
for the CABAC. Each context has an associated 
finite state machine conveying the index, as a 6-bit 
vector, which assumes 47, in JPEG 2000, and 64, in 
H.264/AVC, allowable values. The small number of 
contexts, in the image compression standard, enables 
hardware architectures to implement the probability 
state array in registers, whereas the video schema 
imposes using an on-chip memory to save area of an 
integrated circuit. In spite of this drawback, 
H.264/AVC exhibits more flexible properties for 
pipeline-oriented approaches, since probability state 
updating process experience no impact from the 
probability interval renormalization. Such 
dependencies exist in the case of JPEG 2000, while 
coding MPS. If it does not cause renormalization 
shifts then the probability state, pointed by the 
current context, remains unchanged; otherwise a 
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Figure 2: The interval subdivision in the JPEG2000 
arithmetic coder. 

Figure 3: The interval subdivision in the 
H.264/AVC arithmetic coder. 
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Figure 4: Arithmetic coding procedure in JPEG2000 
embeds the conditional exchange of subintervals, 

conditional probability update for MPS. 

new value is stored in accordance with the index 
transaction table. In the image compression schema, 
indices, in the probability state array, are initialised 
always to the same values defined in the standard 
specification. H.264/AVC involves quite 
complicated initialisation rules dependent on the 
quantization parameter (Qp), the frame type and a 
particular context number. Moreover, for INTER 
frames, we can select between three sets of 
initialisation schemas. The best choice may be done 
on the base of the resultant compression rate and 
depends on the video content. As for circuit, the 
initialisation rules introduce a considerable amount 
of both silicon and time resources. The first 
implication arises from the need to keep a large 
number of pre-defined constants in either the ROM 
table or combinatorial logic. The second one is 
caused by the necessity to check the rate for three 
initialisation cases, while coding INTER frames. 
Incorporating three CABAC engines, operating in 
parallel, can solve the time problem at the expense 
of hardware resources. 

2.2 Interval length calculation 

JPEG 2000 incorporates the 16-bits interval register, 
whereas H.264/AVC uses the 9-bits one. As for 
hardware, the increased precision improves slightly 
coding efficiency at the expense of resources and a 

longer carry chain. In considered standards, the 
interval length undergoes multiplication-free 
modifications, which realize its subdivision into two 
disjoint ranges. Since multiplication products are 
replaced by their tabled approximations, we would 
deal with some losses in coding efficiency (up to 
3%). To mitigate this drawback, both compression 
schemes utilize different approaches. In JPEG 2000, 
the CABAC executes the conditional exchange, 
which ensures that the larger and smaller 
subintervals are always assigned to MPS and LPS, 
respectively. A fast hardware implementation 
translates this feature to a comparator (A<2Qe?) 
driving, together with MPS/LPS signal, the selection 
of an appropriate subinterval. The associated latency 
of this operation matches that in subtraction carry 
chain (A-Qe), thereby, the additional circuit should 
not deteriorate working frequency. H.264/AVC 
employs another solution to improve coding 
efficiency. Prior to subdivision (by subtraction), the 
interval is classified to one of four ranges based on 
its two bits located just after the MSB bit (which 
should equa1 1). Each range corresponds to a 
separate set of probability estimates to better 
approximate a multiplication product (A*Qe). 
Hence, given a set, the index points an appropriate 
estimate ready for either the subtraction or 
conditional interval reloading. A circuit, 
implementing the H.264/AVC arithmetic coder, has 
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to provide all necessary probability estimate tables 
what amounts to a relevant combinatorial logic. The 
generated estimates should be available before 
beginning subinterval calculation to minimize 
propagation delays. Therefore, the pipelined 
architecture should determine these estimates in a 
preceding stage. However, selection between four 
ones, depended on the interval bits, must be held at 
the second stage what affects negatively timing. 
Determining estimates in advance fails in case of 
JPEG 2000 because of conditional state updating, as 
described above. On the other hand, there is no need 
for the selection. Moreover, less significant bits of 
estimates vary weakly over all indexes, what drives 
the logic synthesizer to simplify circuits, thus, 
shorting critical paths. After all, the interval value is 
renormalized by means of the shifting circuit. Fig. 6 
and 7 depict interval length calculation circuits able 
to process one symbol per clock cycle for considered 
standards. 

2.3 Interval base calculation 

The base register in H.264/AVC needs 10 bits to be 
implemented. The location of subintervals is 
inverted with respect to JPEG 2000, i.e. in video 
compression scheme the upper and the lower 
correspond to LPS and MPS coding, respectively. 
Most notably, while subtracting the probability 
estimate from the interval length (LPS coding), the 
base has to be increased by the subtraction product. 
This dependency may affect negatively clock rate. 
Locating the base circuit in a separate pipeline stage 
gives somewhat shorter critical paths. As a 
consequence of similar bit counts in carry chains (9 
and 10), the delays of pipelined circuits match one 
another. This observation holds for renormalization 
units due to an identical shift number submitted to 
both. The JPEG 2000 arithmetic coder keeps the 
lower bound of the interval in the 28 bits register. It 
experiences the analogous operations as the 
H.264/AVC counterpart. From hardware 
perspective, the main difference arises from their 
sizes what reflects on the latency in carry chains. In 
order to shorten critical paths in JPEG 2000, it is 
viable to divide the base register into two parts and 
place them in consecutive pipeline stages. Such 
rearrangement refers also to relevant combinatorial 
logic. Another distinguishing feature of the image 
compression coder lays in the meaning of the oldest 
part of the lower bound register, which supports 
carry propagation and code data releasing. The 
H.264/AVC version applies a different solution to 
these problems, so that, it removes the need to 
extend the base register towards MSB bits. The 
typical circuit managing the base is shown in Fig. 8. 

Figure 8: The C-base updating circuit able to 
process one symbol per clock cycle. 

ICETE 2004 - WIRELESS COMMUNICATION SYSTEMS AND NETWORKS

312



 

2.4 Code stream generation 

In the H.264/AVC arithmetic coder, output bits are 
released from the second MSB position of the base 
register after each single renormalization shift. In 
order to solve the problem of carry propagation, 
ones, encountered in series, are counted without 
outputting. Occurrence of the carry, indicated by the 
MSB bit of the base register, activates releasing 
binary one followed by a number of zeros. 
Otherwise, the inverted version of such sequence 
appears as an outcome after encountering a zero bit. 
This procedure requires the use of a counter 
signalling a total of outstanding bits. Its precision 
should match a maximal possible code stream length 
to prevent overflow when dealing with an extremely 
long series. The produced bits are assembled into 
bytes and released. It may happen that more then 
one byte has to be output due to a large number of 
outstanding bits. Provided the CABAC accepts one 
symbol per clock cycle, the design must adjust this 
rate to irregular code byte generation conditions by 
inserting wait-states. The JPEG 2000 arithmetic 
coder is free to that problem since at most two code 
bytes can appear as an outcome after processing one 
symbol. The algorithm imposes the need to keep the 
last generated byte in the buffer ready to complete 
carry. If there is the 0xFF byte, the control logic 
inserts one stuffing bit into the MSB position of the 
following byte. This bit assumes the zero value to 
trap a carry. A dedicated down-counter points to bits 
in the base register that have not been released so 
far. In terms of higher performances, both 
compression standards find a separate pipeline stage 
to make the code stream generation adequate. 

2.5 Bypass mode 

The CABAC in H.264/AVC provides the bypass 
mode, which, against the regular one, assumes 
uniform probability distribution of submitted 
symbols. Hence, it skips the probability state 
updating routine. Since related symbols contribute to 
the same code stream as in regular mode, it is natural 
to use the same resources with their timing 
constraints. The interval register remains unchanged 
in bypass mode. This property, in conjunction with 
skipping the probability adaptation, gives an 
opportunity to process bypassed symbols and regular 
ones in parallel. The probability estimates are 
obtained by single shifting right (division by 2) the 
interval value. Therefore, we must append one bit to 
represent estimate accurately. In case of JPEG 2000, 
the bypass mode forwards symbols directly to the 
output stream without arithmetic encoding. As for 
hardware, this approach allows increasing the 

throughput to a rate determined by the bit-plane 
coder performances, which submits input data to the 
CABAC module. However, the total improvement is 
not so significant since the standard enables the 
bypass mode for some coding passes over lowest bit 
planes. 

3 EVALUATION 

3.1 System-level constraints 

Since the CABAC in H.264/AVC produces the 
single code stream for an entire slice, all necessary 
context-symbol data have to be applied to the one 
functional block. Thus, its speed determines the 
overall performances of the coder when input data 
are received continuously. Lower bit-rates decrease 
demands for throughput. Using rate-distortion 
optimisation for each macro-block improves quality 
at the same compression ratio. To obtain rates, we 
need to carry out arithmetic coding (when used) for 
all possible coding modes. As a consequence, it 
burdens the CABAC with a large number of 
computations and may lead to timing constraints for 
the encoder. JPEG 2000 supports entropy-coding 
parallelism by independent analysing rectangular 
blocks of coefficients in the wavelet domain. Each 
such code block generates a separate output stream, 
which can be truncated in some points to increase 
the compression ratio at the expense of quality 
losses of the reconstructed image. Moreover, a 
special mode drives the arithmetic coder to terminate 
the stream on these points. For the sake of the rate 
control policy, it is desired to produce more 
outcomes to discard their less significant parts with 
reference to the optimisation criteria. Thus, we need 
faster CABAC engines to support this property. 

3.2 Evaluation conditions 

Evaluations have been conducted for some video 
sequences taking into account the number of binary 
symbols submitted to the arithmetic coder in both 
standards. We examined test cases relating to CIF 
and QCIF resolutions. As reference software for 
image compression schema, we have employed 
JJ2000 version 5.1 adapted to support video material 
as Motion JPEG 2000 (ISO/IEC 15444-3, 2002). To 
get characteristics following options have been used: 
no tiling, five levels of wavelet decompositions, 9/7 
wavelet filter, code block size of 64 x 64 samples, 
regular coding mode, single quality layer. Explicit 
quantization by step size has enabled to vary both  
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Figure 9. Averaged throughput requirements for H.264/AVC (JVT) and Motion JPEG2000 
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Figure 10. Averaged throughput requirements for H.264/AVC (JVT) using RD optimization or not. 

quality and rate. Additionally, the special case, when 
no quantization is present, has been checked to 
demonstrate the most critical conditions, when total 
losses in quality of the reconstructed images results 
only from the rate-control policy. For encoding 
video material, the Joint Model (JM) of the Joint 
Video Team (JVT), software version 7.4 has been 
used. We have explored constraints when taking 
advantage of the RD-optimisation (rate-distortion) or 
not. All tests have skipped the rate controller to 
determine quality losses by explicit quantization 
parameter, Qp. The list of other settings has been as 
follows: only one slice per picture, 2 reference 
frames, full search of motion vectors, in IBBP mode: 
I-frames every 15th, 2 B-frames between I and/or P. 
All evaluations assumed frame rate of 30 Hz. 

3.3 Evaluation results 

Fig. 9 shows throughput (number of coded symbols) 
versus quality expressed as average PSNR 
(distortion) of the luminance component over all 
frames in a given sequence. The average PSNR of 
the chrominance components (U, V) has been 
adjusted with reference to that of the luminance one 
to obtain approximately the same differences for 
both compression schemas. This objective has been 
achieved by first producing curves for JPEG 2000, 
and then, iteratively varying the quantization 
parameter offset for chrominance components in 
H.264/AVC reference model. As expected, the 
throughput requirements increase significantly if we 
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want to decrease distortions. Without RD 
optimisation, the video compression schema takes 
less time to accomplish the arithmetic coding routine 
than JPEG 2000. The INTRA mode of H.264/AVC 
demands a little smaller throughput then JPEG 2000 
for the quality range of interest to most video 
applications. However, at higher qualities, both 
standards need similar processing speed of the 
CABAC block with the tendency to favour the JPEG 
2000. Of course, the use of INTER mode makes 
H.264/AVC the best solution in terms of both 
compression ratio and throughput of the entropy 
coder. On the other hand, the compressed stream 
must embed the INTRA frames, so, their temporal 
impact on the latency of the arithmetic coder should 
be taken into account. Using RD optimisation in 
H.264/AVC increases demands for the CABAC 
module by about two orders of magnitude (see Fig. 
10). This computation growth is necessary only to 
select the best mode for macroblock in the sense of 
Lagrange’s minimization. The opportunity for 
parallelism arises, since a macroblock can be 
processed for different modes at the same time. As 
depicted in Fig. 11, the computation demands for the 
CABAC engine are almost proportional to a given 
rate in both standards. So, on the base of imposed 

bandwidth or storage limitations, we can estimate 
desired throughput of the arithmetic coder. 
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3.4 Discussion 

With the above observations, we re-examine the 
pipelined structure of the arithmetic coders for real 
time performances. Since the context generator in 
JPEG 2000 occupies a relatively large silicon area of 
the integrated circuits (due to coefficient memory), it 
is payable to optimize the throughput of the CABAC 
unit rather then to duplicate entropy coding paths 
including both modules. Such single path, 
embedding pipeline architecture able to process one 
symbol per clock cycle, yields speed to target from 
CIF sequences (4:2:0 – 4:4:4, 30 frames per second) 
provided regular and lossless mode (Hsiao et. all, 
2002), (Lian et. all, 2003), (Li et. all, 2002), (Fang 
et. all, 2002). Approaches based on sequential 
arrangement attain worse results in spite of higher 
clock rates (Andra K et. all, 2003). The lossy 
compression allows higher throughputs, as shown in 
Fig. 12. Of course, the exact performances depend 
primarily on the technology of an integrated circuits 
and efforts spent to minimize critical paths. To speed 
up the entropy coding, we can use parallel 
processing paths and/or modify the architecture to 
process two or more symbols per clock cycle.  
In H.264/AVC encoder without RD optimisations, 
the single CABAC engine, complying with pipeline 
arrangement (like in JPEG 2000) able to process one 
symbol per clock cycle, can easy support PAL and 
NTSC standards in the compression range of most 
interest. Moreover, it makes possible to target 
HDTV at lower bit-rates (low quality). However, we 
must remember that the throughput of the whole 
video coder depends on the motion estimation unit 
rather then the entropy coding stage. Taking 

HARDWARE-ORIENTED ANALYSIS OF THE ARITHMETIC CODING – Comparative study of JPEG2000 and
H.264/AVC compression standards

315



 

advantage of the RD optimisation finds the 
arithmetic coder to become another bottleneck of the 
system. As mentioned above, employing several 
engines in parallel mitigates timing constraints at the 
cost of silicon resources. This can be realized in two 
ways. The first assumes dividing a frame into a 
number of slices and assigning one CABAC unit to 
each of them. Prior to checking all coding scenarios, 
we have to save the states of internal registers, and 
then, encode a macroblock in series for various 
modes staring from the same state. The second way 
determines rates simultaneously in separate coding 
units. One can combine these approaches as well. 
Since some symbols obey uniform distribution, they 
induce extension of the output stream by one bit. So, 
when we want to estimate rates, it is enough to count 
them without submitting to the arithmetic coder. Fig. 
13 depicts the difference in throughput of the 
CABAC, while benefiting from this opportunity. 

4 CONCLUSIONS 

The analysed arithmetic coding algorithms proves to 
comply with the general schema of the pipeline 
architecture design. Corresponding stages exhibit 
some variants of the CABAC concepts requiring 
different approaches to minimize critical paths. The 
H.264/AVC version can achieve higher working 
frequencies than the JPEG 2000 one due to smaller 
sizes of the key registers. Owing to the latter 
supports entropy coding parallelism, it can achieve 
high performance, but a hardware designer should 
primarily sophisticate the single entropy channel to 
save a total of silicon area. Special attention must be 
paid to optimise the CABAC unit in H.264/AVC, 
when RD optimisation is on, including parallel 
encoding engines, counting bypassed symbols, and 
minimizing critical paths. Without RD 
enhancements, the throughput of the single CABAC 
gives opportunity even to target HDTV. 
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