
SOURCE CODE AUTHORSHIP ANALYSIS FOR SUPPORTING
THE CYBERCRIME INVESTIGATION PROCESS

Georgia Frantzeskou
Laboratory of Information and Communication Systems Security, Aegean University

Department of Information and Communication Systems Engineering, Karlovasi, Samos, 83200, Greece

Stefanos Gritzalis
Laboratory of Information and Communication Systems Security, Aegean University

Department of Information and Communication Systems Engineering, Karlovasi, Samos, 83200, Greece

Stephen G. MacDonell
School of Computer and Information Sciences Auckland

University of Technology Private Bag 92006 Auckland 1020 New Zealand

Keywords: Authorship Analysis, Software Forensics, Plagiarism.

Abstract: Cybercrime has increased in severity and frequency in the recent years and because of this, it has become a
major concern for companies, universities and organizations. The anonymity offered by the Internet has
made the task of tracing criminal identity difficult. One study field that has contributed in tracing criminals
is authorship analysis on e-mails, messages and programs. This paper contains a study on source code
authorship analysis. The aim of the research efforts in this area is to identify the author of a particular piece
of code by examining its programming style characteristics. Borrowing extensively from the existing fields
of linguistics and software metrics, this field attempts to investigate various aspects of computer program
authorship. Source code authorship analysis could be implemented in cases of cyber attacks, plagiarism and
computer fraud. In this paper we present the set of tools and techniques used to achieve the goal of
authorship identification, a review of the research efforts in the area and a new taxonomy on source code
authorship analysis.

1 INTRODUCTION

Computers and networks have played an important
role in peoples’ everyday life over the last decade.
But while computers have made our lives easier and
have improved our standard of living, have also
introduced a new venue of criminal activities.
Cyber attacks in the form of viruses, trojan horses,
logic bombs, fraud, credit card cloning, plagiarism
of code have increased in severity and frequency.
Once forensic investigators have identified the piece
of software responsible for the attack we might want
to try to locate its source (Krsul, and Spafford,
1996).
In an attempt to deal in a more formal way to tackle
these problems, Spafford and Weeber suggested that

a technique they called software forensics could be
used to examine and analyze software in any form,
source or executable code, to identify the author
(Spafford, and Weeber, 1993).
But why do we believe it is possible to identify the
author of a computer program? Humans are
creatures of habit and habits tend to persist. That is
why, for example, we have a handwriting style that
is consistent during periods of our life, although the
style may vary, as we grow older. Does the same
apply to programming?
Although source code is much more formal and
restrictive than spoken or written languages, there is
still a large degree of flexibility when writing a
program (Krsul, and Spafford, 1996). This flexibility
includes characteristics that deal with the layout of
the program (placement of comments, indentation),

85
Frantzeskou G., Gritzalis S. and G. MacDonell S. (2004).
SOURCE CODE AUTHORSHIP ANALYSIS FOR SUPPORTING THE CYBERCRIME INVESTIGATION PROCESS.
In Proceedings of the First International Conference on E-Business and Telecommunication Networks, pages 85-92
DOI: 10.5220/0001390300850092
Copyright c© SciTePress

characteristics that are more difficult to change
automatically by pretty printers and code formatters,
and deal with the style of the program (comment
lengths, variable names, function names) and
features that we hypothesize are dependent on the
programming experience (the statistical distribution
of lines of code per function, usage of data
structures). Research studies on this field have
proved that many of these features (layout, style,
structure) of computer program can be specific to a
programmer. Section 2 contains a revised
categorisation on applications areas of the field,
section 3 is an overview of tools and techniques
available, section 4 contains a review of the area and
section 5 a new taxonomy.

2 BACKGROUND

2.1 Motivation

As the incidence of computer related crime increases
it has become increasingly important to have
techniques that can be applied in a legal setting to
assist the court in making judgements (Gray et al.
1997). Some types of these crimes include attacks
from malicious code (such as viruses, worms, trojan
horses, and logic bombs) and computer fraud.
Another widely known example of authorship
analysis is plagiarism detection. In the academic
community, it is considered unethical to copy
programming assignments (MacDonell et al. 1999).
Using this technique, assignments can be compared
to see if some are “suspiciously similar”. Authorship
analysis could also be applied in psychological
studies of the relationship between programmer
attributes and their code (Spafford 1989).
In the commercial world when a specific program
module or program needs to be maintained the
author may need to be located. It would be
convenient to be able to determine the name of the
programmer from a set of several hundred
programmers, which is not otherwise recorded or
may be incorrect
Some of these problems are already faced with a
variety of techniques (Gray et al. 1997). The
creation of a new field with its own methods and
tools, called software forensics, has helped to tackle
these issues in a proper way and not in an ad hoc
manner. The term software forensics implies the use
of these tools and methods for some legal or official
purpose.

2.2 Where could it be used?

Source code authorship analysis can be divided into
5 sub-fields according to the application area. This
categorisation is an extended version of Gray’s et al.
(1997) work.
1. Author identification. The aim here is to decide
whether some piece of code was written by a certain
programmer. This goal is accomplished by
comparing this piece of code against other program
samples written by that author. This type of
application area has a lot of similarities with the
corresponding literature where the task is to
determine that a piece of work has been written by a
certain author.
2. Author characterisation. This application area
determines some characteristics of the programmer
of a piece of code, such as cultural educational
background and language familiarity, based on their
programming style.
3. Plagiarism detection. This method attempts to
find similarities among multiple sets of source code
files. It is used to detect plagiarism, which can be
defined as the use of another person’s work without
proper acknowledgement.
4. Author discrimination. This task is the opposite of
the above and involves deciding whether some
pieces of code were written by a single author or by
some number of authors. An example of this would
be showing that a program was probably written by
three different authors, without actually identifying
the authors in question.
5. Author intent determination. In some cases we
need to know whether a piece of code, which caused
a malfunction, was written having this as its goal or
was the result of an accidental error. In many cases,
an error during the software development process
can cause serious problems.

3 THE PRACTICE OF PROGRAM
AUTHORSHIP ANALYSIS

3.1 Overview

The essence of authorship analysis is locating some
features that most likely remain constant among a
set of programs written by the same author (Metrics
extraction). The next step is using these source code
features to develop models that are capable of
discriminating between several authors (Data
analysis & classification).

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

86

3.2 Metrics extraction

Based on general appearance of the code or the use
of programming idioms, expert opinion can,
potentially, be given on the degrees of similarity and
difference between code fragments (MacDonell et
al. 1999). However, a more scientific approach may
also be taken since both quantitative and qualitative
measurements can be made on computer program
source code and object code. These measurements
are referred to as metrics and most of them are
borrowed and/or adapted from the field of software
metrics and have primarily been used for software
process estimation.
Authorship analysis is based on the construction of
an author profile (Sallis et al. 1996), using a
comprehensive set of such metrics. The profile for a
given programmer is likely to include metrics
relating to product size, structure, layout, and
expression. Ideally, such metrics should have low
within-programmer variability, and high between-
programmer variability.
We could divide the metrics used for authorship
analysis into 4 sub-categories. The first three belong
to quantitative metrics category and the last on the
qualitative metrics category: (Krsul and Spafford,
1996), (Kilgour et al., 1997).
Programming layout metrics include those metrics
that deal with the layout of the program. For
example metrics that measure indentation,
placement of comments, placement of braces etc.
These metrics are fragile because the information
required can be easily changed using code
formatters. Also many programmers learn
programming in university courses that impose a
specific set of style rules regarding indentations,
placement of comments etc.
Programming style metrics are those features that
are difficult to change automatically by code
formatters and are also related to the layout of the
code. For example such metrics include character
preferences, construct preferences, statistical
distribution of variable lengths and function name
lengths etc.
Programming structure metrics include metrics that
we hypothesize are dependent on the programming
experience and ability of the programmer. For
example such metrics include the statistical
distribution of lines of code per function, ratio of
keywords per lines of code etc.
Fuzzy logic metrics include variables that they allow
the capture of concepts that programmers can
identify with, such deliberate versus non deliberate
spelling errors, the degree to which code and
comments match, and whether identifiers used are
meaningful.

Measurements in the first three categories are
automatically extracted from the source code using
pattern matching algorithms. These metrics are
primarily used in managing the software
development process, but many are transferable to
authorship analysis. Fuzzy logic metrics cannot be
extracted in an automatic way and expert
intervention is required.
It is possible to perform authorship analysis on the
executable code, which is the usual form of an attack
in the form of viruses, trojan horses, worms etc. In
order to perform such analysis executable code is
decompiled (Gray et al., 1997), a process where a
source program is created by reversing the
compiling process. Although there is a considerable
information loss during this process there are many
code metrics still applicable, such as compiler and
system information, level of programming skill and
areas of knowledge.

3.3 Data analysis & classification

Once these metrics have been extracted, a number of
different modelling techniques, such as neural
networks, discriminant analysis, case based
reasoning can be used to develop models that are
capable of discriminating between several authors
(MacDonell et al., 1999).

3.3.1 Discriminant Analysis

Discriminant analysis (SAS) is a statistical technique
that uses continuous variable measurements on
different groups of items to highlight aspects that
distinguish the groups and to use these
measurements to classify new items. This technique
is the most widely used for source code authorship
classification.
An important advantage of the technique
(MacDonell et al., 1999) is the availability of
stepwise procedures for controlling the entry and
removal of variables. By working with only those
necessary variables we increase the chance of the
model being able to generalize to new sets of data.

3.3.2 Neural Networks

Artificial Neural Networks (ANN) are
computational models that try to emulate the
behavior of the human brain (Mair et al., 2000).
They are based on a set of simple processing
elements, highly interconnected, and with a massive
parallel structure. Some of the characteristics of
neural networks are their learning, adapting and
generalization capabilities. Feed-Forward Neural
Networks (FFNNs) are the most commonly used

SOURCE CODE AUTHORSHIP ANALYSIS FOR SUPPORTING THE CYBERCRIME INVESTIGATION PROCESS

87

form of ANNs and have been used in source code
authorship analysis (MacDonell et al., 1999).

3.3.3 Case Based Reasoning

CBR is a machine learning method originating in
analogical reasoning, and dynamic memory and the
role of previous situations in learning and problem
solving (Schank, 1982). Cases are abstractions of
events (solved or unsolved problems), limited in
time and space.
Aarmodt and Plaza (1994) describe CBR as being
cyclic and composed of four stages, the retrieval of
similar cases, the reuse of the retrieved cases to find
a solution to the problem, the revision of the
proposed solution if necessary and the retention of
the solution to form a new case.
When a new problem arises, a possible solution can
be found by retrieving similar cases from the case
repository. The solution may be revised based upon
experience of reusing previous cases and the
outcome retained to supplement the case repository.
One particular case-based reasoning system that has
been previously used for software metric research
and in source code authorship analysis is the
ANGEL system (Shepperd and Schofield, 1997).

3.3.4 Manual Approach

This approach involves examination and analysis of
a piece of code by an expert. The objective is to
draw conclusions about the authors’ characteristics
such as educational background, and technical skill.
This technique can also be used also in combination
with an automated approach (Kilgour et al., 1997),
in order to derive fuzzy-logic linguistic variables to
capture more subjective elements of authorship, such
as the degree to which comments match the actual
source code’s behaviour etc.

3.3.5 Similarity Calculation

This approach uses a set of numeric metric values or
token strings (Verco and Wise, 1996) to represent
each program. Based on these values programs are
being compared in order to produce a measure that
quantifies how close these programs are (Jones,
2001).

4 REVIEW OF RELATED WORK

Primarily authorship analysis studies have been
performed in text and later this technique has been
applied to computer programs. We now review
previous research done in each of these areas

keeping our focus on source code authorship
analysis.

4.1 Text authorship analysis

The most extensive and comprehensive application
of authorship analysis is in literature. One famous
authorship analysis study is related to Shakespeare’s
works and is dating back over several centuries.
Recently Elliot and Valenza (1991) compared the
poems of Shakespeare and those of Edward de Vere,
7th Earl of Oxford, where attempts were made to
show that Shakespeare was a hoax and that the real
author was Edward de Vere, the Earl of Oxford. In
this study, specific author features such as unusual
diction, frequency of certain words, choice of
rhymes, and habits of hyphenation have been used as
tests for author attribution. The results indicated
significant differences between the works of the two
authors, which denied the claim that Edward de Vere
was indeed Shakespeare. A similar study had been
carried out on the disputed Federalist papers
(Mosteller and Wallace, 1964), (Bosch, and Smith,
1998). Mosteller and Wallace (1964) adopted a
statistical inference method to analyze the paper
contents, while Bosch and Smith (1998) used linear
programming techniques to find a separating
hyperplane based on various combinations of 70
function words. Both studies reached the same
conclusion that the papers were written by Madison,
one of the two authors in dispute. Diederich (2000)
applied for first time a machine learning technique
called Support Vector Machine (SVM) to this
problem. He performed a number of experiments
with texts from a German newspaper. With nearly
perfect reliability the SVM was able to reject other
authors and detected the target author in 60-80% of
the cases.
Text authorship analysis has also been applied in the
context of criminal investigation. The analysis of the
Unabomber manifesto is an example of using
linguistics metrics (e.g. word usage) along with
manual and statistical analysis to attribute a piece of
work to a particular author. In this case, the
manifesto and the suspect terrorist, Theodore
Kaczynski, shared similar characteristics, such as a
distinctive vocabulary, irregular hyphenations, etc
(Foster, 2001).
A new area of study is the identification and
characterisation of electronic message authors based
on message contents. De Vel et al (2001) evaluated
author attribution performance in the context of
multiple e-mail topic categories. The same authors
have also undertaken authorship characterization and
in particular authorship gender (male or female) and
language background (English as first or second

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

88

language) cohort attribution. In both cases they used
structural and stylometric features and in the later
experiment they used in addition, a set of gender-
preferential language attributes. A machine learning
approach was adopted and the SVM was employed
as the learning algorithm. The experiments gave
promising results.

4.2 Source code authorship analysis

On the evening of 2 November 1988, someone
infected the Internet with a worm program. Spafford
(1989) conducted an analysis of the program using
three reversed-engineered versions. Coding style and
methods used in the program were manually
analyzed and conclusions were drawn about the
author’s abilities and intent. Following this
experience, Spafford and Weeber (1993) suggested
that it might be feasible to analyze the remnants of
software after a computer attack, such as viruses,
worms or trojan horses, and identify its author. This
technique, called software forensics, could be used
to examine software in any form to obtain evidence
about the factors involved. They investigated two
different cases where code remnants might be
analyzed: executable code and source code.
Executable code, even if optimized, still contains
many features that may be considered in the analysis
such as data structures and algorithms, compiler and
system information, programming skill and system
knowledge, choice of system calls, errors, etc.
Source code features include programming
language, use of language features, comment style,
variable names, spelling and grammar, etc.
Cook and Oman (1989) used “markers” based on
typographic characteristics to test authorship on
Pascal programs. The experiment was performed on
18 programs written by six authors. Each program
was an implementation of a simple algorithm and it
was obtained from computer science textbooks.
They claimed that the results were surprisingly
accurate.
Longstaff and Shultz (1993) studied the WANK and
OILZ worms which in 1989 attacked NASA and
DOE systems. They have manually analyzed code
structures and features and have reached a
conclusion that three distinct authors worked on the
worms. In addition, they were able to infer certain
characteristics of the authors, such as their
educational backgrounds and programming levels.
Sallis et al (1997) expanded the work of Spafford
and Weeber by suggesting some additional features,
such as cyclomatic complexity of the control flow
and the use of layout conventions.
An automated approach was taken by Krsul and
Spafford (1995) to identify the author of a program

written in C. The study relied on the use of software
metrics, collected from a variety of sources. They
were divided into three categories: layout, style and
structure metrics. These features were extracted
using a software analyzer program from 88
programs belonging to 29 programmers. A tool was
developed to visualize the metrics collected and help
select those metrics that exhibited little within-
author variation, but large between-author variation.
A statistical approach called discriminant analysis
(SAS) was applied on the chosen subset of metrics
to classify the programs by author. The experiment
achieved 73% overall accuracy.
Other research groups have examined the authorship
of computer programs written in C++ (Kilgour et al.,
1997); (MacDonell et al. 1999), a dictionary based
system called IDENTIFIED (integrated dictionary-
based extraction of non-language-dependent token
information for forensic identification, examination,
and discrimination) was developed to extract source
code metrics for authorship analysis (Gray et al.,
1998). Satisfactory results were obtained for C++
programs using case-based reasoning, feed-forward
neural network, and multiple discriminant analysis
(MacDonell et al. 1999).
Ding (2003), investigated the extraction of a set of
software metrics of a given Java source code, that
could be used as a fingerprint to identify the author
of the Java code. The contributions of the selected
metrics to authorship identification were measured
by a statistical process, namely canonical
discriminant analysis, using the statistical software
package SAS. A set of 56 metrics of Java programs
was proposed for authorship analysis. Forty-six
groups of programs were diversely collected.
Classification accuracies were 62.7% and 67.2%
when the metrics were selected manually while
those values were 62.6% and 66.6% when the
metrics were chosen by SDA (stepwise discriminant
analysis).

4.3 Plagiarism Detection

Plagiarism detection is another field closely related
to the problem of authorship analysis, especially
authorship categorization and similarity detection.
Jones (2001), offered a useful definition of
plagiarism detection, characterising it as a problem
of pattern analysis, based on plagiarising
transformations, which have been applied to a
source file. Such transformations include “verbatim
copying, changing comments, changing white space
and formatting, renaming identifiers, reordering
code blocks, reordering statements within code
blocks, changing the order of operands/operators in
expressions, changing data types, adding redundant

SOURCE CODE AUTHORSHIP ANALYSIS FOR SUPPORTING THE CYBERCRIME INVESTIGATION PROCESS

89

statements or variables, replacing control structures
with equivalent structures”.
One of the earliest set of techniques for plagiarism
detection in software is the attribute counting
techniques which count the level of a certain
attribute contained within a piece of code. These
systems use a number of metrics such as Halstead’s
software science metrics (Halstead, 1977),
McCabe’s cyclomatic complexity (McCabe, 1976),
the nesting depth (Dunsmore, 1984) etc. The first
automated system used Halstead’s metrics for
plagiarism detection and has been developed by
Ottenstein (1979). Other examples of attribute
counting system include the work of Berghell, and
Sallach, (1984), Grier’s Accuse system (1981). This
approach was at best moderately successful (Verco,
and Wise, 1996), because “summing up a metric
across the whole program throws away too much
structural information”.
More recent approaches named structure metrics
techniques, which as Clough (2000) writes,
“compare string representations of the program
structure”, are assessing “the similarity of token
strings”. Examples of these include Plague, Sim,
YAP, and JPlag.
The sim plagiarism detection system (Grune, 1991)
developed by Dick Grune converts the source
programs into token strings and then in pairs finds
matching substrings of decreasing lengths The YAP
family approaches (Wise, 1992), (Wise, 1996), uses
the source code to generate token sequences by
removing comments, translating upper case letters to
lower case, mapping synonyms to a common form,
reordering the functions into their calling order and
by removing all tokens that are not from the lexicon
of the target language. The next step is to apply an
algorithm where each token string is (non-
redundantly) compared with all the others. The
biggest change that has occurred in the latest version
of YAP, YAP3, is a switch to the underlying use of
the Running-Karp-Rabin Greedy-String-Tiling
(RKR-GST) algorithm which allows the system to
detect transposed subsequences, JPlag (Prechelt,
2002) uses the same basic comparison algorithm, the
Greedy-String-Tiling (GST) as YAP3, but uses a
different set of optimizations for improving its run
time efficiency. Plague (Whale, 1990) works in a
similar fashion to the YAP3 method discussed
previously, but without using the RKR-GST
algorithm.
A different set of approaches include the work
proposed by Jankowitz (1988) on a model for
detecting plagiarism in student Pascal programs,
where a template was constructed for each program,
using elements like programming style features and
the order in which procedures are referenced during
static execution. All templates were compared

against each other and similar regions were extracted
from the programs. Statistical analysis was then
performed on those common regions to characterize
the students’ programming styles. Jones (Jones
2001) in order to detect program similarities has
created metrics based physical and Halstead
program profiles. Closeness was computed as the
normalized Euclidean distance between profiles.

5 TAXONOMY

A new taxonomy of source code authorship analysis
is presented, which is a modified and expanded
version of the taxonomy developed by Zheng et al
(2003).
Table 1: Taxonomy for Source Code Authorship Analysis

Problem
Category Description

Authorship
Identification

Aims to determine
whether a piece of code
was written by a certain
author.

Authorship
Characterization

Based on the
programming style and
techniques used
determines some
characteristics of the
programmer of a piece
of code, such as cultural
educational background
and language
familiarity.

Plagiarism Detection This method attempts to
find similarities among
multiple sets of source
code files. It is used to
detect plagiarism,
which can be defined as
the use of another
person’s work without
proper
acknowledgement.

Author intent
determination

We need to know
whether a piece of code
which caused a
malfunction was written
having this as its goal
or was the result of an
accidental error.

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

90

Author discrimination Determines whether
some pieces of code
were written by a single
author or by some
number of authors.

Approach
Category Description

Manual Analysis This approach involves
examination and
analysis of a piece of
code by an expert. It
can be used to draw
conclusions about the
authors’ characteristics
such as educational
background, and
technical skill.

Similarity Calculation Uses a set of numeric
metric values or token
strings (Verco, and
Wise, 1996) to
represent each program.
Based on these values
programs are being
compared in order to
produce a measure that
quantifies how close
these programs are
(Jones, 2001).

Statistical Analysis Uses statistical
techniques such as
discriminant analysis in
order to investigate
differences between
authors of programs
and to discriminate
authors effectively.

Machine Learning Uses methods such as
Case Base Reasoning
and Neural networks to
predict the author of a
piece of code based on
a set of metrics.

6 CONCLUSIONS

It seems that source code authorship analysis is an
important area of practice in computer security,
computer law, and academia as well as an exciting
area of research. The experiments that have been
performed support the theory that it is possible to

find a set of metrics that can be used to classify
programmers correctly. Within a closed
environment, and with a limited number of
programmers, it is possible to identify authorship of
a program by examining some finite set of metrics.
As part of this development in the field there is the
necessity for more formally defined methods and
metrics specifically used in this area. Further work
will be to enrich the set of metrics in order to
improve classification accuracy. An example could
be introducing object oriented metrics when
examining authorship in C++ or Java. Also by
employing other machine learning techniques or
statistical methods such as Bayesian techniques, we
could produce better results.

REFERENCES

Aarmodt, A., and Plaza, E., 1994, Case-Based Reasoning:
Foundational issues, Methodical Variations and
System Approaches. AI Communications, vol 7(1).

Bosch, R., and Smith, J., 1998, Separating hyperplanes
and the authorship of the disputed federalist papers,
American Mathematical Monthly, 105(7):601-608,
1998.

Berghell, H., L., and Sallach, D., L., 1984, Measurements
of Program Similarity in Identical Task Environments,
SIGPLAN Notices 19(8), pp. 65-75.

Clough, P., 2000, Plagiarism in natural and programming
languages: an overview of current tools and
technologies, Department of Computer Science,
University of Sheffield.

Diederich, J., Kindermann, J., Leopold, E., and Paass, G.,
2000, Authorship attribution with Support Vector
Machines, Applied Intelligence (Submitted).

Ding, H., Samadzadeh, M., H., 2003, Extraction of Java
program fingerprints for software authorship
identification, The Journal of Systems and Software,
article under press.

Dunsmore, 1984, Software metrics: an overview of an
evolving methodology, Information Processing and
Management 20, pp. (183-192).

Elliot, W., and. Valenza, R.,1991, Was the Earl of Oxford
The True Shakespeare?, Notes and Queries, 38:501-
506.

Foster, D., 2001, Author Unknown: On the Trail of
Anonymous, Henry Holt, New York.

Faidhi, J., A., and Robinson, S., K., 1987, An Approach
for Detecting Program Similarity within a University
Programming Environment, Computers and Education
11(1), pp. 11-19.

Grier, S., 1981, A Tool that Detects Plagiarism in Pascal
Programs, Twelfth SIGCSE Technical Symposium, St
Louis, Missouri, pp. 15–20 (February 26-27, 1981)
(SIGCSE Bulletin Vol. 13, No. 1, February 1981).

SOURCE CODE AUTHORSHIP ANALYSIS FOR SUPPORTING THE CYBERCRIME INVESTIGATION PROCESS

91

Grune, D., 1991, Concise Report on Algorithms in Sim,
(Report distributed with Sim software).

Gray, A., Sallis, P., and MacDonell, S., 1997, Software
forensics: Extending authorship analysis techniques to
computer programs, in Proc. 3rd Biannual Conf. Int.
Assoc. of Forensic Linguists (IAFL'97), pages 1-8.

Gray, A., Sallis, P., and MacDonell, S., 1998, Identified
(integrated dictionary-based extraction of non-
language-dependent token information for forensic
identification, examination, and discrimination): A
dictionary-based system for extracting source code
metrics for software forensics. In Proceedings of
SE:E&P’98 (Software Engineering: Education and
Practice Conference), pages 252–259. IEEE Computer
Society Press.

Halstead, M., H., 1977, Elements of software science,
North Holland, New York.

Jankowitz, H. T., 1988, Detecting Plagiarism in Student
Pascal Programs, Computer Journal, 31(1).

Jones, E., L., 2001, Metrics Based Plagiarism Monitoring,
in Proc. Consortium for Computing in Small Colleges

Kilgour, R. I., Gray, A.R., Sallis, P. J., and MacDonell, S.
G., 1997. A Fuzzy Logic Approach to Computer
Software Source Code Authorship Analysis, Accepted
for The Fourth International Conference on Neural
Information Processing -- The Annual Conference of
the Asian Pacific Neural Network Assembly
(ICONIP'97). Dunedin. New Zealand

Krsul, I., and Spafford, E. H., 1995, Authorship analysis:
Identifying the author of a program, In Proc. 8th
National Information Systems Security Conference,
pages 514-524, National Institute of Standards and
Technology.

Krsul, I., and Spafford, E. H., 1996, Authorship
analysis: Identifying the author of a program,
Technical Report TR-96-052, 1996

Longstaff, T. A., and Schultz, 1993, E. E., Beyond
Preliminary Analysis of the WANK and OILZ Worms:
A Case Study of Malicious Code, Computers and
Security, 12:61-77.

McCabe, T. J., 1976, A complexity measure, IEEE
Transactions on Software Engineering, SE-2 (4),
pp(308-320).

MacDonell, S.G., Gray, A.R., MacLennan, G., Sallis, P.J.,
1999.Software forensics for discriminating between
program authors using case- based reasoning, feed
forward neural networks, and multiple discriminant
analysis. In: Proceedings of the 6th International
Conference on Neural Information, vol. 1, Dunedin,
New Zealand, pp. 66–71.

Mair, C., Kadoda, G. Lefey, M., Phalp, K., Schofield , C.,
Shepperd, M., Webster, S., 2000, An investigation of
machine learning based prediction systems The
Journal of Systems and Software 53 23-29.

Mosteller, F., and Wallace, D., 1964, Inference and
Disputed Authorship: The Federalist, Addison-
Wesley, Reading, Mass.

Oman, P., and Cook, C., Programming style authorship
analysis. In Seventeenth Annual ACM Science
Conference Proceedings, pages 320–326. ACM, 1989.

Ottenstein, L., M., Quantitative estimates of debugging
requirements, 1979, IEEE Transactions of Software
Engineering, Vol. SE-5, pp(504-514).

Prechelt, L., Malpohl, G., Philippsen, M., Finding
Plagiarisms among a Set of Programs with JPlag,
Journal of Universal Computer Science, vol. 8, no. 11
(2002), 1016-1038

Sallis P., Aakjaer, A., and MacDonell, S., 1996, Software
Forensics: Old Methods for a New Science.
Proceedings of SE:E&P’96 (Software Engineering:
Education and Practice). Dunedin, New Zealand,
IEEE Computer Society Press, 367-371.

SAS on line docs http://www.sasdocs.utoledo.edu/ last
accessed 12/1/2004

Schank, R., 1982,. Dynamic Memory: A theory of
reminding and learning in computers and people.
Cambridge University Press.

Spafford, E. H., 1989, The Internet Worm Program: An
Analysis,” Computer Communications Review, 19(1):
17-49.

Shepperd, M. J., and Schofield, C., 1997, Estimating
software project effort using analogies, IEEE
Transactions on Software Engineering, 23(11), 736-
743.

Spafford, E. H., and Weeber, S. A., 1993, Software
forensics: tracking code to its authors, Computers and
Security, 12:585-595.

Verco, K. K., and Wise, M. J., 1996, Software for
detecting suspected plagiarism: Comparing structure
and attribute-counting systems, In John Rosenberg,
editor, Proc. of 1st Australian Conference on
Computer Science Education, Sydney, ACM.

Vel, O., Anderson, A., Corney, M., and Mohay, G., 2001,
Mining E-mail Content for Author Identification
Forensics, SIGMOD Record, 30(4): 55-64.

Whale, G., 1990, Identification of Program Similarity in
Large Populations, The Computer Journal 33(2), pp.
140–146.

Wise, M., J., 1992, Detection of Similarities in Student
Programs: YAP'ing may be Preferable to Plagueing,
Proceedings, Twenty Third SCGCSE Technical
Symposium, Kansas City, USA, 268-271.

Wise, M. J., 1996, Improved Detection of Similarities in
Computer Program and other Texts, Twenty-Seventh
SIGCSE Technical Symposium, Philadelphia, U.S.A.,
pp. 130-134.

Zheng, R., Qin, Y., Huang, Z., and Chen H., 2003,
Authorship Analysis in Cybercrime Investigation
Springer-Verlag Heidelberg, ISSN: 0302-9743,
Volume 2665.

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

92

