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Abstract: (Motta et al., 2003) proposed a Locally Optimal Vector Quantizer (LPVQ) for lossless encoding of 
hyperspectral data, in particular, Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) images. In this 
paper we first show how it is possible to improve the baseline LPVQ algorithm via linear prediction 
techniques, band reordering and least squares optimization. Then, we use this knowledge to devise a new 
lossless compression method for AVIRIS images. This method is based on a low complexity, linear 
prediction approach that exploits the linear nature of the correlation existing between adjacent bands. A 
simple heuristic is used to detect contexts in which such prediction is likely to perform poorly, thus 
improving overall compression and requiring only marginal extra storage space. A context modeling 
mechanism coupled with a one band look ahead capability allows the proposed algorithm to match LPVQ 
compression performances at a fraction of its space and time requirements. This makes the proposed method 
suitable to applications where limited hardware is a key requirement, spacecraft on board implementation. 
We also present a least squares optimized linear prediction for AVIRIS images which, to the best of our 
knowledge, outperforms any other method published so far. 

1 INTRODUCTION 

In the last three decades, air-borne and space-borne 
remote acquisition of high definition electro-optic 
images has been increasingly used in military and 
civilian applications to recognize objects and 
classify materials on the earth’s surface. By 
analyzing the spectrum of the reflected light it is 
possible to recognize the material(s) composing the 
observed scene. The development of new detector 
technologies has made possible the introduction of 
new classes of aircraft spectrometers capable of 
recording a large number of spectral bands over the 
visible and reflected infrared region. For this reason 
the data sets they produce are often referred to as 
hyperspectral. These instruments have reached 
spectral resolution sufficient to allow very accurate 
characterization of the spectral reflectance curve of a 
given spatial area. For example, images acquired 
with the JPL’s Airborne Visible/Infrared Imaging 

Spectrometer, AVIRIS (NASA, 2003), have pixels 
covering an area of approximately 20x20 meters, 
with radiance decomposed into 224 narrow bands, 
approximately 10nm wide each, in the range 
400-2,500nm. Spectral components are represented 
with a 16 bits precision. 

Hyperspectral imagery is a rapidly growing 
source of remote sensed data, even though its 
precision pales compared to the millions of channels 
of a truly high resolution lab spectrometer. The 
technology seems mature enough to use higher 
resolution, space-borne spectrometers. In fact, 
increasing the number of bands, i.e. the spectral 
resolution, allows for more sophisticated analysis 
and increases the data rate by only a linear amount. 
The problem is that the acquisition of these images 
already produces large amounts of highly correlated  
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data (e.g., in the range 140-1,000 Mb for AVIRIS 
images) in the form of a two dimensional image 
matrix each pixel consisting of many components, 
one for each spectral band (Figure 1). 

Since hyperspectral imagery is acquired at cost 
and often used in critical tasks like classification 
(assignment of a label to every pixel) or target 
detection (identification of a somewhat rare 
instance), compression algorithms that provide 
lossless or near-lossless quality (for classification 
and detection purposes) may be required. In 
addition, it may be desirable to have low complexity 
that allows efficient on-board implementation with 
limited hardware. Traditional approaches to the 
compression of hyperspectral imagery are based on 
differential prediction via DPCM (Aiazzi, 2001; 
Abousleman, 1995; Abousleman et al., 2002), direct 
vector quantization (Manohar and Tilton, 2000; 
Ryan and Arnold, 1997; Mielikäinen and Toivanen, 
2002; Pickering and Ryan, 2001) or dimensionality 
reduction through Principal Component Analysis.  

In (Motta et al., 2003) a locally optimal design of 
a partitioned vector quantizer (LPVQ) for the 
encoding of high dimensional data is presented. The 
algorithm is applied to lossless, near-lossless and 
lossy compression of AVIRIS data. LPVQ’s lossless 
compression, is aligned with the current state of the 
art. Its design and coding process, on the other hand, 
are computationally intensive (although highly 
parallelizable), while decoding is just table lookup. 
The asymmetrical nature of the algorithm makes it 
most appropriate for systems in which the codebook 
design does not have to be performed on-board. An 
inter-band linear prediction approach based on least 
square optimization is presented in (Mielikäinen et 
al., 2002). This compression method optimizes the 
parameters of a linear predictor with spatial and 
spectral support. Such optimization is performed for 
each sample. 

Using linear prediction, least square 
optimization, and optimal band reordering, in 

Section 2 we show how to encode efficiently the 
quantization indices produced by LPVQ, improving 
upon the baseline algorithm. We also exploit 
successfully the fact that spectral correlation in the 
original data is preserved in LPVQ indices after 
quantization.  

In Section 3 we target the linear nature of the 
spectral correlation of AVIRIS data with a simple 
linear prediction method. The proposed method is 
composed by an intra-band predictor, similar to the 
one in LOCO-I (Weinberger et al., 2000), for the 
few bands with strong spatial correlation. The rest is 
encoded using a novel inter-band predictor. This 
predictor shares the same low complexity of the 
intra-band one, and requires buffering of at most two 
scan-lines from each of the previous three bands. It 
also uses a simplified version of the context 
modeling mechanism in LOCO-I that allows to 
mach the compression performance of LPVQ. 
Finally we discuss experimental results and current 
research directions. 

Figure 1: AVIRIS data cube Moffett Field, scene 1 
(NASA, 2003) 

2 IMPROVING ENTROPY 
CODING OF LPVQ’S 
QUANTIZATION INDICES 

(Motta et al., 2003) compress hyperspectral data by 
using a modified version of the Generalized Lloyd 
Algorithm to perform a dimensionality reduction of 
the original data. The D-dimensional input vectors 
are broken into L sub–vectors (L=16 in the reported 
experiments). Each sub–vector is then encoded with 
the 8–bit index of the closest match in the codebook 
generated by LPVQ, while the quantization error is 
encoded separately. The spatial correlation in the 
original data is preserved in the index files (planes), 
so they look very much like “natural” grayscale 
images. The index files are then encoded using 
LOCO-I. 

In this section we focus on improving the 
compression of the quantization indices. We note 
that spectral dependency is still observable among 
index files. To take advantage of this phenomenon, 
we propose three methods (summarized in Table 1) 
two of which extend the LOCO-I/JPEG-LS 
predictor. They compute the prediction, based on a 
causal data subset (Figure 2), kji  of the pixel 

 in the i-th row, j-th column of the k-th plane. 
x ,,ˆ

k
The first method in Table 1 is the one used by 

LOCO-I, reported here as a reference. The second, 
that we call INTER predictor, is similar to the one 
presented in (Barequet an Feder, 1999), while 
3D-MED is a novel, general extension of LOCO-I to 
an inter-band context. These two methods share the  

jix ,,
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Table 1: linear predictors for encoding of LPVQ quantization indices. 
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Figure 2: Prediction Template 

same low complexity of the JPEG-LS standard, and 
hence a highly efficient implementation is possible. 

The third method, 3D-LSQ, is more aggressive 
and computationally more expensive: given a 
reference plane and a 3D subset of causal data, an 
optimal linear predictor, in the least square sense, is 
determined for each sample. The prediction structure 
and the notation used in the following is similar to 
the one presented in (Brunello et al., 2002). 

 
Two different context enumerations are defined 

based on the distance functions Figure 3: 2D and 3D contexts and pixel enumerations 
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The resulting 2D and 3D context templates are 

showed in Figure 3.  
In the following, by we denote the i-th pixel 

in the above enumeration of the 2D context of 
kji ,, . Moreover,  denotes the j-th pixel in the 

3D context of . The N-th order prediction of the 
current pixel ( ,, knm , we drop the subscript 
and the parenthesis when referring to the current 
pixel) is computed as 

)(ix
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are calculated using the well-known theory on 
optimal linear prediction. Notice that the data used 
in the prediction are a causal, finite sub–set of the 
past data and no side information needs to be sent to 
the decoder.  

 
 

Using matrix notation, we write 
 

)()( XCXC −⋅−= αα tP  
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By taking the derivative with respect to α  and 

setting it to zero, the optimal predictor coefficients 
are the solution of the following linear system 

 
XCCC tt =⋅ 0)( α  

 
Once the optimal predictor coefficients for the 

current sample have been determined, the prediction 
error ⎣ xx ˆ−= ⎦ε  is encoded in the same way of the 
previous two methods. 

3 OPTIMAL BAND ORDERING 

Because each index file represents a subset of 
contiguous spectral bands, and because the 
correlation between two bands is not always 
inversely proportional to the distance of their 
wavelengths, a sequential encoding of the index files 
is generally suboptimal. In order to address this 
issue, given a function  representing the cost 
of encoding plane j using plane i as reference, it is 
possible to find the optimal plane ordering using 
standard graph theory results. Similar ideas could be 
find in (Tate, 1997; Motta and Weinberger, 2001).  

( )f i j,

Given the cost , we can define a complete 
weighted graph with L nodes where the weight of 
the edge ,i j  is equal to . We add a fictitious 
node 0 connected by an edge to each node j. The 
weight ,

( )f i j,

w ( )f i j,

jw0  represents the cost of encoding plane j 
without using any reference plane (e.g., using 
LOCO-I). The problem of optimal plane ordering is 
equivalent to the problem of finding the minimum 
spanning tree of the resulting graph (if ( )f i j,  is not 
symmetrical then the graph is directed and one 
should compute the optimal branching rooted at 0 
(Gabow et al., 1986)).  

As a proof of concept, we used the first order 
entropy of the difference between each pair of 
planes as a cost function. 

3.1 Context Modeling 

The underlying assumption of the previous section is 
that the index planes generated by LPVQ look very 
much as “natural” images. This justifies the use of 

off-shelf image-oriented techniques to encode these 
data. This behavior is the by-product of the 
lexicographical sorting of the centroids generated by 
LPVQ, which are “scaled/translated” version of each 
other. Similar behaviors are experienced in standard 
VQ image compression when code-vectors are 
arranged by increasing norm. This is not surprising 
because if the VQ is not rate-distortion optimal (like 
in most practical applications), then there must exist 
some inter-codeword correlation. Given the structure 
of LPVQ, there must be some correlation between 
the codeword of adjacent sub-vectors as well, hence 
the previous assumption is sub-optimal. 

A lossless block coding of VQ code-vectors 
specifically designed for image compression, 
Address-VQ, was proposed in (Nasrabadi and Feng, 
1990). Improvements were presented in (Wu et al., 
1998; Gong et al., 2000), which exploited the inter-
codeword correlations by means of context 
modeling and conditional entropy. These methods 
are off-line algorithms based on Bayes’ theorem  
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where X  is the VQ index to be coded, 1X  and 

2X  causal neighbor of X ).  
The 3-dimensional nature of the LPVQ index 

planes suggests the use of a 3-D causal context. In 
order to assess the potentials of a Bayesian context 
modeling scheme, we analyzed the empirical 
probability , , , , 1 , 1, 1, ,( )i j k i j k i j k i j kP x x x x− − −| , − , and 

, , , , 1( i j k i j kP x x − )|  for each index plane. In general, the 
value of the pixel in the current plane is better 
predicted by the value of the corresponding pixel in 
the previous plane. This suggests a very simple, 
on-line scheme named PREV: define 256 entropy 
coders; encode , ,i j kx  using the -th coder 
(without any form of prediction). 

, , 1i j kx −

 
proc PREV 
 def EC[256], EC1 as entropy_coder 
 
 ; encode xi,j,1 using EC1 
 EncodePlane(1,EC1) 
 
 for K = 2 to L do 
    for I = 1 to ROWS do 
       for J = 1 to COLS do 
          Encode(xi,j,k,EC[xi,j,k-1]) 
end proc 
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 LOCO 

Cuprite  40.44 

Jasper Ridge  35.02 

Low Altitude  39.10 

LunarLake  44.45 

Moffet Field  40.92 

AVERAGE  39.99 

3.2 Experimental resul

Table 2 reports results in term
all schemes presented so far. Th
3D-LSQ are obtained with M=9

As expected, when sequen
3D-LSQ is better than the 3D-M
predictor. Compared to the base
on average the improvem
respectively +16%, +8.54% a
optimal plane ordering is in us
are much higher (+19.25% 
interestingly, the PREV pr
scheme is more than 10% bette
optimal ordering, and more th
LOCO-I, used in (Motta et al.,
PREV is more than  times
on a AMD Athlon(tm) MP 1
computer. 

200

4 INTER-BAND LINE
PREDICTION 

Remote sensed images, like 
forms of correlation: spatial (th
to be present in many adjacent 
of a river) and spectral (one b
partially predicted from othe
investigations emerges that the 
generally much stronger than th
Furthermore, dynamic range
(instrument noise, reflection 
movements, etc.) of AVIRIS d
than those in photographic imag
the spatial predictor of LOCO
fail on this kind of data. F

COMPRESSION OF HYPERSPECTRAL IMAGERY
Table 2: entropy coding results for LPVQ indices. 
Sequential Coding Optimal Band Ordering 

INTER 3D-MED 3D-LSQ INTER 3D-MED 3D-LSQ PREV 

43.44 44.97 48.82 47.30 46.11 50.28 50.52 
+7.42% +11.19% +20.73% +16.96% +14.01% +24.33% +24.93% 
35.99 37.75 39.13 38.06 38.39 39.88 47.31 

+2.77% +7.82% +11.76% +8.68% +9.64% +13.89% +35.09% 
40.61 42.10 45.96 44.33 43.15 47.12 51.93 

+3.86% +7.67% +17.54% +13.38% +10.36% +20.52% +32.78% 
46.30 48.00 51.22 49.42 48.91 52.38 57.72 

+4.15% +7.99% +15.23% +11.18% +10.04% +17.85% +29.85% 
43.35 44.28 47.34 46.53 45.28 48.76 55.70 

+5.92% +8.19% +15.67% +13.70% +10.65% +19.14% +36.12% 
41.94 43.42 46.49 45.13 44.37 47.68 52.64 

+4.87% +8.59% +16.28% +12.86% +10.96% +19.25% +31.63% 
ts 

s of compression far 
e reported results for 
0 and N=9. 
tial coding is used, 
ED and the INTER 

line LOCO-I coding, 
ents attained are 

nd +4.87. When the 
e, the improvements 

for 3D-LSQ). More 
ediction/compression 
r than 3D-LSQ with 
an 30% better than 

 2003). Furthermore, 
 faster than 3D-LSQ 

900+ based personal 

AR 

AVIRIS, show two 
e same material tends 
pixels: e.g., the water 
and can be fully or 

r bands). From our 
spectral correlation is 
e spatial correlation. 

 and noise levels 
interference, aircraft 
ata are much higher 
es. For these reasons 

-I (Table 1) tends to 
igure 4 shows the 

performance in terms of bit per sample of this 

predictor. From our simulations it is clear that the 
median predictor of JPEG-LS is inefficient almost 
everywhere, and especially in the visible part of the 
spectrum that accounts for almost half of the data 
and it is characterized by large dynamic ranges. 
Nevertheless, JPEG-LS fast and efficient 
compression would be highly desirable to an on-
board, hardware implementation.  

Figure 4: Empirical band entropy of the Median 
predictor 

Motivated by these considerations, we propose a 
novel compression method for AVIRIS data using a 
a novel predictor for bands marked inter-band (IB 
set) and a linear predictor in the style of JPEG-LS 
for the rest. 

This new predictor uses a simple heuristic to 
detect contexts in which it is likely to fail. In such 
cases the prediction is corrected using information 
about the behavior of the inter-band predictor in the 
previous two bands. After this prediction step, the 
prediction error is computed and entropy coded with 
a simple arithmetic coder. See Figure 5 for a formal 
description. After the prediction step, the prediction 
error is computed and entropy coded with a simple 
arithmetic coder. 
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Figure 5: Inter-Band Linear Predictor 

4.1 Least Squares Optimization 

In order to set an upper bound for the achievable 
compression by the proposed linear prediction 
method and for the data under examination, we 
decided to implement a prediction scheme optimized 
for each pixel and for each band based on least 
squares optimization. We apply the 3D-LSQ (here 
named SLSQ) approach of Section 2 directly to the 
224 AVIRIS bands, rather than the 16 LPVQ index 
planes, with M=4 and N=1. 

The lossless compression results achieved by 
this method on AVIRIS images are, at the best of 
our knowledge, better than those published so far. 

4.2 Experimental Results 

Table 3 reports the compression ratio obtained by 
LP and SLSQ on the five “standard” publicly 
available AVIRIS images. We compare it with 
JPEG-LS, JPEG2000 (Taubman and Marcellin, 
2001), and LPVQ. We do not report the compression 
results of (Mielikäinen et al., 2002) (claiming 
average compression ratio of 3.06:1). This is 
because their experimental results refer to a data sets 
that seems to be a subset of the one we are using and 
that we do not have currently available (furthermore 
(Mielikäinen et al., 2002) reports non-standard 
dimensions for AVIRIS images). LP has been 
applied with IB=Σ-{1…8}, where Σ is the set of 
bands, and no prediction threshold. The proposed LP 
method is comparable to LPVQ at a fraction of the 
computational cost and it is sensibly superior to the 
standard lossless image coders. 

We also tested an extension of LP and SLSQ 
based on the considerations taken from Figure 4. For 
each scene of each cube (28 total) we checked which 
band was better compressed spatially (LOCO-I) 
rather than spectrally (LD/SLSQ). For any given 
band i, if and only if it has been compressed 
in intra mode more than 15 times over 28 (HEU 
option). A more aggressive approach (OPT) assumes 
that the encoder checks for the best method first. 
This requires virtually no side information (1 
bit/band) and a one band look-ahead capability. For 
LP we also introduced a simplified version of the 
context modeling mechanism described in 
(Weinberger et al., 2000), named LP-CTX.  

IBi∈

Results of improved algorithms are reported in 
Table 4. We report also results of differential JPEG-
LS and differential JPEG2000, where by 
“differential” we mean that the previous band is 
subtracted from the current one for spectral 
decorrelation before applying JPEG-LS or 
JPEG2000. This pre-preprocessing steps improves 
the two standard algorithms by 40% and 53% 
respectively, but better compression is achieved by 
LP and SLSQ. As we can see, the LP-CTX with on 
band look-ahead improves by more than 2% the LP 
method, matching LPVQ compression performance 
at a cost of a small increase of storage requirements 
over baseline LP, while being 5% better than 
differential JPEG-LS/JPEG2000. Finally, 
SLSQ-OPT achieves the overall best compression. 
While this method needs a one band look-ahead, it 
has the advantage of requiring virtually no side 
information (1 bit/band), and since inter and intra 
mode could be performed in parallel, compression 
time is practically unchanged.  

5 CONCLUSIONS 

In the first part of this paper we present and analyze 
three linear prediction schemes for the encoding of 
the index planes generated by the LPVQ algorithm. 
The best method achieves ≈20% improvement upon 
the basic schemes presented in (Motta et al., 2003). 
In the final subsection we show that the assumption 
that the index planes are comparable to “natural” 
images is not completely true. We also show how a 
very simple context modeling can achieve even 
better compression. 

In the second part of the paper we propose a 
novel approach for lossless coding of AVIRIS data. 
It is based on an inter-band, linear predictor that, 
coupled with a simple entropy coder, competes with 
the current state of the art. The low complexity of 
the proposed method and its raster scan nature, 
makes it amenable for on-board implementations.  

Since the proposed method depends loosely on 
the entropy coder, it would be also possible to 
remove the arithmetic coder and use the CCSDS 
standard algorithm for lossless data compression for 
space applications (CCSDS, 1997), whose hardware 
implementation is widely used on many satellites. 
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Table 3: Compression Results. 
 JPEG-LS JPEG2000 LPVQ LPVQ-PREV LP SLSQ 
Cuprite 2.09 1.91 3.13 3.18 3.03 3.15 
Jaspder Ridge 2.00 1.80 2.82 2.88 2.94 3.15 
Low Altitude 2.14 1.96 2.89 2.94 2.76 2.98 
Lunar Lake 1.99 1.82 3.23 3.28 3.05 3.15 
Moffett Field 1.91 1.78 2.94 3.00 2.88 3.14 
AVERAGE 2.03 1.85 3.00 3.06 2.93 3.12 

 
Table 4: Improvements of baseline LP and SLSQ algorithms. 

LP-CTX SLSQ  Differential 
JPEG-LS 

Differential 
JPEG2000 IB =  

Σ-{1…8} 60% OPT 60% OPT 

Cuprite 2.91 2.92 3.04 3.07 3.09 3.23 3.24 
Jasper Ridge 2.81 2.82 2.96 2.98 3.00 3.22 3.23 
Low Altitude 2.70 2.69 2.79 2.79 2.83 3.02 3.04 
Lunar Lake 2.93 2.94 3.06 3.08 3.10 3.23 3.23 
Moffett Field 2.84 2.83 2.93 2.94 2.96 3.20 3.21 
AVERAGE 2.84 2.84 2.96 2.97 3.00 3.18 3.19 

We are currently working to improve the 
inter-band predictor and perform a formal analysis 
of the remaining correlation after prediction, in order 
to find suitable context modeling mechanisms that 
will indubitably improve current performances. 
Near-lossless extensions are also under 
consideration. 
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