
PRACTICAL AUDITABILITY IN TRUSTED MESSAGING SYSTEMS

Miguel Reis and Artur Romão
Novis Telecom, SA

Estrada da Outurela, 118-A, Carnaxide, Portugal

A. Eduardo Dias
Universidade de Évora

Rua Romão Ramalho, 59, Évora, Portugal

Keywords: Auditability, Trusted Repository, Secure Messaging, Secure Electronic Commerce.

Abstract: The success of a dispute resolution over an electronic transaction depends on the possibility of trustworthily
recreating it. It is crucial to maintain a trusted, thus fully auditable, repository to which a judge could re-
quest a transaction recreation. This article presents a practical scheme providing strong guarantees about the
auditability of a trusted repository. We use the messaging paradigm to present the mechanism, but it can be
applied to any other scenario that needs to maintain fully auditable long term information.

1 INTRODUCTION

Common messaging systems, in particular electronic
mail, do not possess enough security guarantees to
satisfy most of the assumptions required on security
demanding areas, such as military or business to
business electronic commerce. Even secure elec-
tronic mail is not enough, since it only satisfies
some requirements, like authentication, integrity,
confidentiality and non-repudiation of origin.

Stronger security requirements, like non-
repudiation of submission and non-repudiation
of receipt (Kremer et al., 2002; Zhou, 2001), together
with trusted auditability (Haber and Stornetta, 1997;
Peha, 1999) from the message transportation and
delivery systems, are not guaranteed at all. Fur-
thermore, it is fundamental to assure the effective
message delivery, or some warning about the im-
possibility of delivery, as well as reliable and secure
(e.g., confidential) message archiving, needed for
legal effects and long term availability.

This article presents an approach to maintain long
term auditability of this type of electronic messaging
systems, and it is organized as follows. In section 2
we present a series of required assumptions. In sec-
tions 3 and 4 we propose a new scheme and in sec-
tion 5 we analyze its security. In section 6 we ana-
lyze the efficiency of the proposed scheme. In section
7 we present implementation guidelines using widely

available tools. In section 8 we conclude the article.

2 SECURITY REQUIREMENTS

Messaging systems auditability is based on the
possibility of recreating a transaction or a transaction
set. This requirement demands the trusted storage
of the set of messages belonging to a transaction.
Every message, as well as additional attributes, is
mapped to a specific record. A record is the basic
unit of a trusted repository. We can define trusted
storage as a series of assumptions made over a record:

• Content integrity: It is impossible to corrupt the
content of a record without detection.

• Temporal ordering: Every record must be in
chronological order, and this ordering cannot be
corrupted without detection.

• Record elimination: It is impossible to delete a
record without detection.

• Record insertion: It is impossible to add a non-
authorized record without detection. We define au-
thorized entity as someone possessing or having ac-
cess to a secret needed to create records.

From this point on we will use the word ”validity”
to refer to a situation where all the assumptions are
achieved.

169
Reis M., Romão A. and Eduardo Dias A. (2004).
PRACTICAL AUDITABILITY IN TRUSTED MESSAGING SYSTEMS.
In Proceedings of the First International Conference on E-Business and Telecommunication Networks, pages 169-174
DOI: 10.5220/0001392001690174
Copyright c© SciTePress



3 A NEW AUDITABILITY
SCHEME

In this section we describe a new scheme providing
strong guarantees of meeting all the assumptions
previously identified. Let us assume that all the
records are kept inside a trusted repository. Let us
also assume that message transportation from the
messaging system to the trusted repository is done
without corruption.

3.1 Notation

We use the following notation to represent data
elements and functions in this article:

M : message belonging to a specific transaction

E : record element

E1,E2 : concatenation of two elements E1 and E2

R = {E1,...,En} : record containing the concate-
nation of elements E1 to En

fm, fe, fh: flags indicating the purpose of a record

L : label linking a message with a specific transac-
tion (transaction identifier)

Hk(E) : keyed message digest applied to element
E using key k

H(E) : message digest applied to element E

sk(E) : signature applied to element E using
private key k

VA e SA : verification and signature key of
principal A

E〈n〉 : element placed in position n in an ordered
list

T (E) : timestamp (Adams et al., 2001) applied to
element E

3.2 The protocol

Whenever a message M is sent to the trusted repos-
itory a new record Rm is created in the following way:

Rm = {fm, L,M,Mac}

Mac = Hk(fm, L,M)

The Mac element is generated using elements
present in the record. If any of these elements
changes, the Mac element must change too, in order
to keep the record integrity. This way we ensure that
only who owns the secret k is able to change or add
records to the repository. With this mechanism we
satisfy the integrity assumption.

We now introduce the concept of an epoch. An
epoch is defined as a set of Rm records, ordered in
time, and completed with an Re record. This type of
record is defined in the following way:

Re = {fe, k, VA, Sige, T (Sige)}

Sige = sSA
(fe, k,H(Mac<1>, ...,Mac<n>))

Sige is a digital signature made over a sequence of
elements belonging to the Re record together with a
message digest element. The message digest is built
from an ordered sequence of elements belonging to
all Rm records which form this epoch.

As explained above using Rm records, Re records
can only be changed or added to the trusted repository
by who owns a secret, which is, in this particular
case, the signature key SA. By using a message
digest built over elements orderly collected from all
the records Rm included in this epoch, the signature
element Sige gives us the guarantee of content
integrity, temporal ordering, non-elimination and
non-authorized insertion of records without detection.

The message digest function referred above is
created using Mac elements. This way we not only
guarantee the integrity of these particular elements
within each Rm record, but also the integrity of the
set of Rm records belonging to this epoch.

So far we only guarantee the assumptions defined
in section 2 within each particular epoch (as long as
it is closed). But we must also guarantee that epochs
are ordered in time, as well as the impossibility
to completely remove one or more epochs without
detection, thus certifying that the assumptions defined
in section 2 are verified in all the trusted repository.
To achieve this goal we need to modify the definition
of the Sige element in the following way:

Sige<n> = sSA(fe, k, H(Mac<1>, ..., Mac<n>),
H(Sige<n−1>))

This way all of the Re records are directly con-
nected and ordered in time. Every Re record has
among its elements a reference to the immediately

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

170



previous Re record (as depicted in figure 1). For
someone to be able to compromise one or more
epochs without detection from the validation system,
all of the epochs generated after those ones would
also have to be changed. Assuming the signature key
used in the last Re record of the trusted repository
is never compromised, we can state that with this
scheme all of the assumptions defined in section 2
are fully satisfied.

Re records act as checkpoints of validation
throughout the repository. The concept of creating
checkpoints and link them together follows the
concept of a Merkle tree (Merkle, 1980).

m
<7>

R e
<4>

R m
<8>

R m
<9>

R m
<10>

R
e
<5>

R m
<11>

R m
<12>

R e
<6>

R m
<13>

R ...

4th epoch 5th epoch 6th epoch ...

m
<1>

R m
<2>

R e
<1>

R m
<3>

R e
<2>

R
m
<4>

R m
<5>

R m
<6>

R e
<3>

R
1st epoch 2nd epoch 3rd epoch

Figure 1: Example with a non-fixed number of Rm records
in each epoch.

3.3 Record integrity verification

To validate the content of an Rm record it is neces-
sary to go through the following steps:

1. Check which epoch the Rm record belongs to, thus
identifying that epoch’s Re record.

2. Obtain H(Mac<1>, ...,Mac<n>). Mac elements
are obtained from every Rm record belonging to
the current epoch.

3. Obtain the previous epoch Re record, using it to
obtain H(Sige<n−1>

).

4. Check if the content from record Re is not cor-
rupted, using verification key VA, the elements
gathered in the previous steps and elements fe and
k to validate the digital signature present in element
Sige.

5. Validate the content of record Rm by check-
ing if the content from Mac element matches
Hk(fm, L,M). We need to use the secret element
k present in this epoch’s Re record.

6. Repeat steps 2 to 4 to all of the epochs created after
this one, thus validating the chain of Re records un-
til the last one currently present in the trusted repos-
itory is correctly verified, or an error occurs.

4 HIERARCHICAL
PARTITIONING OF RECORDS

The procedure explained above becomes impractical
as the number of epochs increases. This is due to the
fact that the number of record verifications that are
necessary is directly proportional to the number of
records in the trusted repository.

4.1 Definitions

To solve this problem we introduce a new hierarchical
partitioning scheme. Instead of directly connect all
the Re records in the trusted repository, we now only
directly connect Re subsets. To explain this scheme
we present a new notation:

R[y] : record belonging to hierarchical level y

R<l> : last record of a subset

The last record of an epoch subset, which is always
an Re record, is no longer directly connected to the
first Re record of the next epoch. Instead, it is now
only directly connected to a hierarchically superior
record. This new type of record will be defined as
Rh. Rh records are also grouped in subsets, and
directly connected one to another, just like explained
to Re records. In a generic way, every time a record
subset is terminated with an Rh[y]<l>

record, a new
hierarchically superior record level beginning with
an Rh[y+1]<1>

record is created. The first record
belonging to hierarchical level y+1 is always directly
connected to the last record belonging to hierarchical
level y (as depicted in figure 2). We now formally
introduce this new type of record:

Rh[y] = {fh, VA, Sigh[y] , T (Sigh[y])}, where

Sigh[1]<n>
= sSA

(fh,H(Sige<l>
))

Sigh[y]<1>
= sSA

(fh,H(Sigh[y−1]<l>
)) if y �= 1

Sigh[y]<n>
= sSA

(fh,H(Sigh[y]<n−1>
)) on all

other situations

4.2 Integrity Verification Procedure

With this approach, to validate the content of an
Rm record we begin by going through all the steps
defined in section 3.3 with some minor changes. We
re-define the last step and extend the procedure:

PRACTICAL AUDITABILITY IN TRUSTED MESSAGING SYSTEMS

171



m
<7>

R e
<4>

R m
<8>

R m
<9>

R m
<10>

R
e
<5>

R m
<11>

R m
<12>

R e
<6>

R m
<13>

R ...

4th epoch 5th epoch 6th epoch ...

m
<1>

R m
<2>

R e
<1>

R m
<3>

R e
<2>

R
m
<4>

R m
<5>

R m
<6>

R e
<3>

R
1st epoch 2nd epoch 3rd epoch

h
<1>

R
[1]

h
<2>

R
[1]

1st epoch subset 2nd epoch subset

Figure 2: Hierarchical record scheme example.

6. Repeat steps 2 to 4 to all of the epochs created after
this one and belonging to the current subset, thus
validating a chain of Re records.

7. Find which record Rh[1] is directly connected to the
last record of the current subset, Re<l>

, and check
its content integrity by validating the signature in
element Sigh[1] . Check also the integrity of all the
other Rh[1] records belonging to the same subset.

8. Find which record Rh[y+1] is directly connected to
the last record of the current subset, Rh[y]<l>

, and
check its content integrity by validating the signa-
ture in element Sigh[y+1] . Check also the integrity
of all the other Rh[y+1] records belonging to the
same subset.

9. Repeat the previous step until the hierarchically
highest level as been successfully verified.

With the procedure explained above, verifying the
integrity of some Rm record is no longer directly pro-
portional to the number of existing records, as ex-
plained in section 6.

5 SECURITY ANALYSIS

The integrity of some record Rm is based on the
security of the underlying message digest algorithm,
as well as on the privacy of the secret k used to
calculate Mac elements. Due to this fact, we should
use a well known message digest algorithm, whose
inviolability is perfectly demonstrated. We should
also choose a secret in line with the computational
capabilities available during the underlying epoch,
minimizing the risk of well succeeded attacks over
Mac elements. To prevent an attacker from manip-
ulating Rm records, it is vital to keep the privacy of
secret k assured as long as the current epoch is not
completed with the generation of an Re record.

The secret k used to build Mac elements is present
in the respective Re record. This is not a security
weakness, since the epoch is closed and its security
now lies on the integrity of the Sig element.

The content integrity of record types Re and Rh

is based on the security of the signature algorithm,

as well as on the secrecy of the signature key. This
leads us to conclude that epoch validity is dependent
on the Sig element integrity. If the signature key
becomes compromised the current epoch becomes
also compromised, due to the possibility of re-signing
it without detection.

In order for this compromise procedure to become
fully undetectable it is also necessary to compromise
the chain of directly connected records. This implies
compromising all the Re records belonging to the
current subset and created later in time, as well as
all the directly connected and hierarchically superior
Rh record subsets (as depicted in figure 3). We
can conclude this from the fact that every record
belonging to the chain has among its elements a
reference to the Sig element of some previously
created record.

m
<7>

R e
<4>

R m
<8>

R m
<9>

R m
<10>

R
e
<5>

R m
<11>

R m
<12>

R e
<6>

R m
<13>

R ...

4th epoch 5th epoch 6th epoch ...

m
<1>

R m
<2>

R e
<1>

R
m
<4>

R m
<5>

R m
<6>

R
1st epoch 2nd epoch 3rd epoch

1st epoch subset 2nd epoch subset

Rm
<3>
Re

<2>
Re

<3>

h
<1>

R
[1]

h
<2>

R
[1]

Figure 3: Undetected corruption of record Rm<3> implies
compromising the chain of directly connected records.

This fact, together with the possibility of renewal
of signature keys from one epoch to another makes
undetected corruption extremely hard to achieve.
Since signature key sizes can (and should) be
adapted to the current computational power, the
greatest security concern comes from the ability to
maintain the secrecy of the signature key itself. We
should eliminate the signature key after the end of
an epoch, minimizing the risk of key disclosure.
Since we are using asymmetric cryptography, this
key is no longer necessary to verify a record’s validity.

Nevertheless, it is possible that signature keys
used a long time ago will become compromised (i.e.,
discovered), mostly due to technology breakthroughs.
Even in this case, the record integrity may remain
fully verifiable. All we need to do is to check if
the T element remains valid. This element holds a
timestamp of the Sige or Sigh element, thus placing
an upper boundary on the date the signature has been
made. If this timestamp is later than the date the
signature key has been or known to be compromised,
the record is marked as valid. The T element is
created by applying a digital signature to the target
data. We assume the private key used to generate this
signature is not compromised.

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

172



6 EFFICIENCY

Adapting secret k or signature key sizes to the current
computational power is a basic operation, since both
can be replaced after every epoch.

Creating Re and Rh records takes much more
time than creating Rm records, mostly due to the
characteristics of asymmetric versus symmetric
cryptography (Schneier, 1995). To minimize this
constraint it is possible to increase the number of
Rm records per epoch, keeping always in mind the
fact that one must never allow the computational
power available during the current epoch to be able
to compromise secret k used to build Mac elements.

Secret k is revealed in the end of each epoch,
thus making a validation over an Rm record a very
easy and fast operation to conclude, even after long
time periods. Verifying the validity of an Rm record
implies the validation of O(logx n) records, where

n = total number of records in the trusted repository

x = average number of records within each subset

7 IMPLEMENTATION
GUIDELINES

In this section we present guidelines to an implemen-
tation of the scheme defined in the previous sections,
through the application of technology widely used
and proved to be secure and efficient nowadays.

The message digest algorithm used to create Mac
elements must be widely deployed and proved to
be secure, and at same time efficient, since it will
be used very often. A keyed-hashing algorithm like
HMAC (Krawczyk et al., 1997) satisfies all of the
above requirements.

In a similar way, it is important to use a widely
deployed one-way hash function like SHA − 1
(NIST, 1994) to generate elements which will be
needed to create Sige or Sigh elements.

Sige and Sigh elements will be built using asym-
metric cryptography. The private key is used to
generate those elements and the public key, which
will be bound to a X.509 (ITU-T, 2000) digital
certificate, is used to verify the integrity of the
elements, interacting with a certification authority
(CA). Despite the fact that the trusted repository
must fulfill certain security requirements, critical

operations like certificate life cycle management are
much more suitable to be done by a CA.

It is crucial to the preservation of the proto-
col security to establish a security scheme for
the certificate requests (RSA, 2000) to be done.
There are several good approaches: one is to use
a mutually-authenticated TLS (Dierks and Allen,
1999) connection. Other may be by carrying some
shared secret, which should be evolving from one
request to the next, among the certificate request
extensions.

Another point where we may increase security is
by settling an agreement with the CA in which we
can define a set of X.509 extensions to be included
in all the certificates issued to the service. By issuing
specific extension values for each digital certificate
we may, for instance, lower the risk of certificate
replacement frauds.

Validating an Rm record must also always require
validating the digital certificate state by using an
CRL (ITU-T, 2000) or an OCSP (Myers et al.,
1999) service. Whenever a certificate is found to
be invalid (revoked, expired, etc.) it is necessary to
validate the timestamp present in the T element, as
explained previously, to decide if the record remains
valid.

One final note concerning secret and private key
protection. As pointed out before, it is extremely
important to keep the items private. To achieve this
goal we should use cryptographic hardware which
allows us to generate secret and private keys inside an
hardware token. The keys also have the possibility to
never leave the token, thereby creating a very secure
environment.

8 CONCLUSION

In this article we proposed a new scheme providing
strong guarantees about the auditability of a trusted
repository. The trusted repository maintains three
types of records:

• Rm records keep the actual messages belonging to
a specific and well defined transaction.

• Re records aggregate sets of Rm records together,
establishing epochs. This type of records are also
aggregated in sets. In every set an Re record keeps
a reference to the Re record created immediately
before.

PRACTICAL AUDITABILITY IN TRUSTED MESSAGING SYSTEMS

173



• Rh records are aggregated in directly connected
sets and bound to a hierarchical level. Generically,
every first Rh record of a subset belonging to
hierarchical level y holds a reference to the last Rh

(or Re if y represents the first hierarchical level)
record of a subset belonging to hierarchical level
y − 1.

We state that maintaining the secret k used to build
Rm records private as long as the current epoch is
not terminated, and adapting the size of this secret
to the computational power available during the
present time makes undetected corruption of Rm

extremely records hard to achieve. Besides that, if we
maintain strong guarantees that the private keys used
in creating the last record of every hierarchical level
are not compromised, undetected corruption of the
complete chain of Re and Rh records alse becomes
extremely hard to achieve.

We have provided guidelines that prove informally
that it is possible to make a practical implementation
of this scheme through the application of technolo-
gies available in the present time. Although we
use the trusted messaging system concept as a way
of presenting the scheme, it can be applied to any
system that needs to maintain fully auditable long
term information.

REFERENCES

Adams, C., Cain, P., Pinkas, D., and Zuccherato, R. (2001).
Time-stamp protocol (tsp). RFC 3161, Internet Engi-
neering Task Force.

Dierks, T. and Allen, C. (1999). The tls protocol version
1.0. RFC 2246, Internet Engineering Task Force.

Haber, S. and Stornetta, W. S. (1997). Secure names for bit-
strings. In ACM Conference on Computer and Com-
munications Security, pages 28–35.

ITU-T (2000). Itu-t recommendation x.509. Technical re-
port, ITU-T.

Krawczyk, H., Bellare, M., and Canetti, R. (1997). Hmac:
Keyed-hashing for message authentication. RFC
2104, Internet Engineering Task Force.

Kremer, S., Markowitch, O., and Zhou, J. (2002). An inten-
sive survey of fair non-repudiation protocols. Com-
puter Communications, 25(17):1606–1621.

Merkle, R. C. (1980). Protocols for public key cryptosys-
tems. In Proceedings of the IEEE Symposium on Re-
search in Security and Privacy, pages 122–134. IEEE
Computer Society Press.

Myers, M., Ankney, R., Malpani, A., Galperin, S., and
Adams, C. (1999). X.509 internet public key infras-

tructure online certificate status protocol - ocsp. RFC
2560, Internet Engineering Task Force.

NIST (1994). NIST Federal Information Processing Stan-
dard Publication 180-1: Secure Hash Standard.

Peha, J. M. (1999). Electronic commerce with verifiable
audit trails. In Proceedings of ISOC.

RSA (2000). Pkcs #10 v1.7: Certification request syntax
standard. Technical report, RSA Laboratories.

Schneier, B. (1995). Applied cryptography: protocols, al-
gorithms, and source code in C. John Wiley and Sons,
Inc., second edition.

Zhou, J. (2001). Non-Repudiation in Electronic Commerce.
Artech House, first edition.

ICETE 2004 - SECURITY AND RELIABILITY IN INFORMATION SYSTEMS AND NETWORKS

174


