Towards a Flexible Access Control Mechanism for
E-Transactions

Vishwas Patil and R.K. Shyamasundar

School of Technology and Computer Science
Tata Institute of Fundamental Research
Homi Bhabha Road, Colaba, Mumbai - 400005, India

Abstract. Security over the Internet depends on a clear distinction between au-
thorized and un-authorized principals. Discriminating between the two involves:
identification (user identifies himself/herself), authentication (the system vali-
dates the user’s identity) and authorization (specific rights granted). Thus, it is
important to develop specifications for access control that realize the above prop-
erties with ease. Public Key Infrastructures (PKIs) provide a basis for specifying
access-control to the users in a secure and non-reputable fashion. Some of the
general deficiencies of PKIs are: (i) they are rigid and cannot scale across dif-
ferent PKI frameworks, (ii) due to efficiency reasons, PKIs are constrained to be
just static data-structures shipped across domains and hence cannot carry any dy-
namic or state-based information, and (iii) for reasons of (ii) the recipients are not
explicitly defined. In this paper, we shall argue that a judicious mix of digital cer-
tificates and authentication mechanisms would lead to a flexible security policy
specification having both static and dynamic capabilities and lead to user-friendly
mechanisms to achieve availability of secure services in e-commerce.

1 Introduction

Web has become an important medium for disseminating information, doing commerce
and business. Organizations are making their whole work-flow system e-enabled, shar-
ing their resources with clients, collaborators, out-stationed employees etc. It has be-
come necessary to deploy mechanisms that would restrict access of such networked
resources only to the authorized users. The main security threats are:

— Confidentiality: gets violated when unauthorized users get protected information,

— Integrity: gets violated when unauthorized user modifies protected information,

— Availability: gets violated when the system is prevented from doing its intended
function.

Cryptographic frameworks like PKI [1] have become de facto standards for realizing
such requirements since it provides authentication, authorization of users, data integrity,
confidentiality, and non-repudiation of transactions.

Access control mechanisms based on digital certificates solely, help in authenticat-
ing and determining user’s authorizations. However, it needs an extensive infrastruc-
ture, which is costly and as certificates are not modifiable once issued, the dynamic or
context-based authorization policies cannot be embedded into them.

Patil V. and K. Shyamasundar R. (2004).

Towards a Flexible Access Control Mechanism for E-Transactions.

In Proceedings of the 1st International Workshop on Electronic Government and Commerce: Design, Modeling, Analysis and Security, pages 66-81
DOI: 10.5220/0001403700660081

Copyright © SciTePress

There are access control mechanisms that are based on the capability models, tradi-
tionally used in operating systems, in which each process originating from an authorized
user inherits same power and this power has to be trimmed down or amplified based on
the context/state of the system, as the case in capability based operating systems. This
is not possible in a PKI based access control mechanisms because of the static nature of
certificates that carry only authorization information. However, the rationale of a PKI
cannot be achieved in capability models. Some of the recent work in capability based
systems [2] tries to take the power of capability model to the applications in distributed
environment. In this approach, users transfer their capabilities over resources/users to
other using references, unlike authorization certificates in PKI based models. A user
can execute a permission over a resource if it has a reference inherited from someone
who already posses such authorization over the resource. Revocation of authority in
such models is immediate since it is an on-line system. Being an on-line system (that
are generally costly), it may hamper the access control decisions in case the underlying
communication system fails.

Several other models exist that try to capture the requirements of an access control
mechanism; PolicyMaker [3], KeyNote [4], RBAC [5]. Access control mechanisms for
a small number of users with limited set of permissions under a single administrative
domain are fairly straight forward. For example, an access control matrix in which each
entry defines a specific set of permissions for a user; removing the entry will revoke
user’s authorizations. As the number of users grow, this approach becomes tedious in
terms of management and performance due to the size of the access control matrix.
RBAC etc. abstracts user permissions into roles, and the roles are assigned to users
using digital certificates that can be used as a proof against the role authorizations.

In this paper, we show that a mix of an off-line framework such as SPKI/SDSI [6],
with an a priori defined heterogeneous authentication mechanisms (on-line/off-line), on
the resource controller’s side to perform additional policy compliance checking, leads
to an expressive policy specification framework. A large part of our framework has
been the establishment of the need of such a mixed approach. Towards the end, we
shall illustrate how the above concepts are being embedded in our effort on the design
of flexi-ACL [7].

The rest of the paper is organized as follows: An overview of SPKI/SDSI is given in
section 2. In sections 3 — 4, we will argue requirements of an access control framework
in distributed environments and highlight the shortcomings of existing approaches. We
briefly sketch our access control framework formalism in section 5 followed by discus-
sions in section 6.

2 Background: SPKI/SDSI

In this section, we give an overview of underlying PKI framework, SPKI/SDSI, used
in our framework. SPKI and SDSI [6, 8] were two separate efforts initiated to over-
come the complexity, privacy and trust related issues faced by the highly centralized
traditional PKIs [9] that have now been integrated under the name SPKI/SDSI or just
SPKI.

SPKI emphasizes naming, groups, ease-of-use, and flexible authorizations. To ac-
cess a protected resource, a client must present proof that it is authorized to the server;
this proof takes the form of a “certificate chain” proving that the client’s public key is in
one of the groups on the resource’s ACL. In SPKI, the onus of identification and proof
of authority to do something is left on the user. Every principal can issue/define the key
bindings locally using an identifier which is valid only locally but the underlying raw
public key is valid globally. So, the SPKI principals can issue certificates binding other
principal’s keys or names (called extended names) at discretion. An authorization grant
is made only locally. If a principal needs to grant authorization to someone beyond her
locality, then she may (must) delegate that grant through a chain of local relationships.
Formally SPKI certificates are defined below:

— A name certificate C is a signed four-tuple (K, A, S, V):

e The issuer K is a public key; the certificate is signed by K.

e The identifier A (together with the issuer) determines the local name “K A”
that is being defined; the name belongs to the local name space of key K.

e The subject S is a key or a local name defined in the other key’s name space
to which ¢ssuer of this certificate binds its local name.

e The wvalidity specification V provides additional information allowing one
to ascertain if the certificate is currently valid, beyond the obvious verification
of the certificate signature.

— An authorization certificate C'is a signed five-tuple (K, S, D, T, V). where,

e delegation bit D, if true, grants the subject permission to further delegate to
others the authorization it is receiving via this certificate.

e authorization specification or authorization tag ,T, that specifies per-
missions being granted.

A brief functional outline of the authorization computation using rewrite rules is illus-
trated with the following scenario: Let principal K serve a resource denoted by RE-
SOURCE and specify the ACL for its access. K authorizes principals K1, Ko, K3 to act
as retailers for its service. A principal K s subscribes for the RESOURCE service via one
of the retailers. Let us see how the subscriber K, comes up with an authorization proof
to access RESOURCE, and how the resource owner K makes use of group certificates
and extended names to efficiently specify and manage the access to the resource. Design
for such a policy is given below, using short-hand denotations for the sake of simplicity;

- K retailers — {K1, Ko, K3} is a “retailers” group defined by principal K and
it can enforce a common policy on all the three subject principals by just narrating
the policy over the name definition retailers.

- K customers — {Ka, Kp, K3 customers} is another local group definition by
principal K, where it has included another group i.e. K3’s customers apart from
K 4 and K g, where K3 customers — {Kp, K,, K, K}

— Principal K consolidates its groups by issuing
K subscribers — {K retailers, K customers} and empowers its members to
access the RESOURCE by making an authorization definition,
Kresouree — K subscribers U. The live delegation flag allows members of group
subscribers to further delegate the authority.

4

The sequel of messages, between the verifier (K) and the prover (K ,) is given below:

1. K sends an access request for RESOURCE. Controller K demands K to satisfy
the access control policy enforced by the following rule:
Kresovrece — K subscribers [.

2. K requests for the definition of K’s subscribers. (K should prove its member-
ship to subscribers group, defined by principal K)

3. K provides the definitions of its groups subscribers, retailers, and customers.
In K’s customers definition, K finds the missing authorization link.

Kresource — K subscribers [

Kresource — K customers O ; since

K subscribers — {K retailers, K customers}
Kresource — K3 customers [; since

K customers — {Ka, Kp, K3 customers} and
K3 customers — {Kp, Kq, K, Ko}

.. Kresource — K¢ [J

Fig. 1. K’s Certificate Chain Discovery Composition

Fig. 1 is K’s authorization proof inference (“certificate chain discovery”). In this man-
ner, K proves its access credentials over RESOURCE and is capable of delegating the
authority further. A dead delegation flag in the access control definition of RESOURCE
will restrict K, from further delegation. For complete certificate chain discovery al-
gorithm (including extensions for threshold authorizations), readers are encouraged to
refer [10, 6].

Such a distributed security infrastructure facilitates designing and efficiently manag-
ing complex security models. Its ability to allow users to locally define their own name
and authorization binding helps achieving natural decentralized trust models, which are
not rigidly dependent on global root CAs. Also, the separation of authorization from
naming prevents unnecessary revelation of user’s authorizations which are not required
while executing a particular authority. Furthermore, provision of threshold certificates
and group certificates allow a resource administrator to write the access control policies
in a relatively manageable and editable fashion.

3 Modeling Security Requirement Specifications

In this section, we shall illustrate how security requirements for a wide range of applica-
tions cannot be met merely either by a PKI framework or an OS-based mechanism; but
needs a mix of static and dynamic (e.g. on-line authentication) schemes. In the follow-
ing section, we provide a number of examples, where we start from a simple scenario
and gradually refine the requirements — formulating solutions in our envisaged frame-
work, and the solutions possible in existing frameworks. The presentations are kept
informal for want of space.

_________ Web
Resource
-7 e
S AT
Certificate |---="""

@' .-t Server
.

Fig. 2. Access Control with X.509

Scenario 0: Consider a Certificate server that can issue certificates and rights for ser-
vices on a Web Resource, as shown in Fig. 2. Users of this setup should be able to
securely authenticate themselves to the Web Resource and perform authorizations as
specified inside the certificate. The dashed lines indicate off-line communication links.
Solution: A simple solution using certificates is: Users obtain digital certificate from
the Certificate Server for accessing the Web Resource. Users provide the credentials
acquired from Certificate Server as a signed access request to the Web Resource, which
simply verifies Certificate Server’s digital signature over the requester’s credentials and
its absence in the CRL (Certificate Revocation List) provided by the Certificate Server.

A centralized PKI framework with a single certificate for name and authorization
bindings introduces issues in scalability, hierarchical trust, and privacy. These issues
are brought out in the examples below where we gradually add constraints or demand
flexibility.

3.1 Scenario 1: Is it possible to delegate authorizations and restrict the number?

Web
Resource

Certificate i

Server

Fig. 3. Access Control with SPKI

The facility of delegation is a natural requirement in any distributed decision making
framework. Fig. 3, shows the modified access control setup using SPKI (delegation is
supported), where principal U; is acting as an authorization proxy for the Certificate

Server. The authorization has been further delegated to Us, Uy, ... without any limit,
unlike U, (hence shown in shade). In SPKI, the source authority cannot control the dis-
tribution of authority once it issues an authorization certificate with delegation facility
to a subject. Thus, without a central database

Legend:
Certificate

Server / Source
of Authority O : authorized principal
without delegation
facility

Clsle]eloje)
0080 006

7

PR \ theta =3 =

slelele N c el @lelel®)

d>=4 //O déb*o* """" Principal U3 has no control over the
l # of principals present at this level
\l

O : authorized principal

Trust Value

Delegation Depth (d)

Fig. 4. Authorization Flow under SPKI

it is not possible to enforce limits on the number of authorized users in the system.
Plausible Solution: One can restrict the number of delegations in a setup through the
use of an on-line central repository which must be updated upon each new assertion
made by any authorized agent of the system. But such an approach will transform the
setup into on-line mode and the role of sub-authority will be reduced to a proxy to the
central authority. Obviously, such model is not appropriate for distributed environment
like Internet, since communication failures are intrinsic to it.

3.2 Scenario 2: Is it possible to restrict the depth of authorization delegation?

Strictly speaking, it is not possible to restrict the depth of authorization delegation with
the help of digital certificates alone (discussed below).

A principal (requester) can form an authorization flow graph (analogous to the one
shown in Fig. 4) from the set of certificates it possesses, in which each vertex is a princi-
pal (either issuer and/or subject) and each directed edge between two vertices represents
an authorization flow from the issuer to the subject vertex. By performing depth-first-
search on such a graph [10], a principal can discover several paths originating in source
authority vertex and terminating in the vertex represented by the principal itself. One of
these paths can be presented as proof of that principal’s authorization over the resource
under consideration. And each vertex present in the proof path essentially represents
one depth of authority delegation. Thus, the verifier of the authorization proof can keep
a tab on the maximum depth permissible in the construction of the proof.

3.3 Scenario 3: Can each user have different accessing rights on the web resource?

An authorization certificate speaks for user’s access rights. One has to revoke the autho-
rization certificate even if a single right among the set of user’s rights has to be revoked.
Thus, on the basis of PKIs such provision becomes cumbersome and unmanageable
over a period of time. But it is possible to provide different access rights to the user if
the resource controller makes use of certificates only to perform correct user authenti-
cation and maintains a separate database (access control matrix) for each user. Such a
scheme is not scalable if there are large number of users with frequent profile updates.

Solution 1: A practical approach is to categorize users into different roles and autho-
rizing them against the rights honored against respective roles. This way the resource
controller has to maintain less information in a manageable way (as done in work-flow
management systems, RBAC [5]).

Solution 2: Another approach could be to explicitly specify the rights of each user into
the user’s certificate itself. This is suitable for a setup where users exercise rights from
a well-defined fixed set of rights. Since inclusion of all rights information into a cer-
tificate will limit the scope of certificates to particular domain. Furthermore if one uses
X.509 [1] to enlist user’s authorizations into the certificate itself; revocation decision
on a single user right will require re-issuance of the certificate apart from the privacy
aspects involved in such an approach. SPKI uses separate certificates for each authoriza-
tion and hence, reduces the impact of revocation to that particular authority. Further, it
uses separate certificates for naming purpose, they are shielded from any authorization
revocation decisions and their scope is not limited to a particular application.

3.4 Scenario 4: Is it possible to restrict an authorized user from acting as a service
proxy for others?

In the access control setup, a user requires a signed statement from the Certificate
Server to access the protected resource. The type of certification scheme used in the
underlying PKI framework has direct effect on the setup. Adding too little informa-
tion about the recipient of the authorization in the authorization statements boils down
to a scheme where: whoever produces a signed authorization request, will get an ac-
cess. Such a setup can only distinguish between authorized and un-authorized access
requests. Whereas, adding too much of user information will invade user’s privacy. So,
the underlying scheme should be able to provide a trade-off between above two options
suitable to users and the system so that the system can identify authorized users. Also,
it should provide effective means of authorization communication among the users so
that they can authorize other users for certain task.

— Case 1: Authorizing users to act as an authorization/service proxy: Sometimes it
is required to allow the authorized users to act as proxy, as is the case of auction
robots bidding on behalf of the user. The underlying PKI framework should be able
to provide authorization delegation facility to its users, unlike hierarchical PKIs
where it is only given to CAs/sub-CAs.

— Case 2: Use of authorization certificates containing no additional information
other than the issuer and subject public keys: Under such setups, users enjoy full
anonymity and can run laundry service [11] for others.

— Case 3: Use of authorization certificates containing additional information e.g.
user’s name, address of delivery etc.: Specifying service access point details inside
the users’ authorization certificate can be a solution for the scenario mentioned in
Case 1. Inclusion of such details either reduces the scope of the underlying certi-
fication scheme or poses privacy threats. Hence, such an approach is not feasible.
But such a setup will certainly differentiate between authorized and un-authorized
users. In communications that are not face-to-face, remote lending cannot be pre-
vented, regardless of whether privacy-protecting certificates or fully traceable iden-
tity certificates are used. Indeed, the “lender” might as well perform the entire
showing protocol execution and simply relay the provided service or goods to the
“borrower” [12]. In user’s negative spirit, it is difficult to stop such behavior.

Further, in a centralized authorization setup (Fig. 2), as the number of users grows the
load on Certificate Server increases. It will be of great assistance, if it could designate
few other agents as a proxy for its’ authorization issuance service.

An important observation is that certificates are static data-structures with crypto-
graphic properties to convey the assertions in provable and off-line manner. To increase
their scope across different applications that use them, one cannot put application-
specific information in them. Also, we have seen that such an effort acts against user’s
privacy. The inability of these static data-structures to convey the dynamic state changes
of applications that use them demands non-certificate based methods in the access con-
trol framework to express context-aware access policies. In the sequel, we will discuss
solutions to the above discussed scenarios and some new scenarios that explicitly de-
mand book keeping of state change.

4 Modeling Static and Dynamic Security Requirements

In the earlier sections, we have argued that the existing frameworks do not support the
following features:

1. Constraints and flexibilities required for specifying proxies by users,
2. Variable access rights for the users,

3. Emergency access requirements, and

4. Robustness/Fault-tolerance and immediate revocation of authority.

As highlighted already, to cater to the above needs, we should have a judicious mix of
certificates and on-line schemes such as authentications. Conceptually, our approach or
solution addresses these through the following abstractions:

1. Abstract out the core access control across scenarios as a global policy specification
that can and will be handled through certificates,

2. Specify refinements that may require on-line schemes as local policies, and

3. The overall policy is then is then obtained through a merger (e.g., intersection is an
example of such merging operation)) of the global and local policies.

Employing the underlying PKI framework for secure authentication of users to the sys-
tem and thereafter to establish identity, through a challenge-response based negotiation

allows to filter out the efforts of authorized users to run laundry service for others. The
inherent feature of delegation comes handy for proxy authorization when required. Fur-
thermore, to derive fine-grained access control decisions, the requester negotiates with
the resource controller for a list of local policies that needs to be adhered to. The re-
source controller may also specify policies for auxiliary rights for users based on the
state information associated with that specific user/process. Integration of capability
based mechanisms at this level of implementation helps us modeling capability systems
for distributed applications.

1 Authorization

0
3
2
=)
5,

Certificate

Certificate

|Server/Resource
Controller

(a) Capability Model [Server/Resource (b) PKI Model

Controller

Fig. 5. Granovetter Diagrams for Capability, PKI Models

A comparative distinction between access control system under capability model
and PKI model is depicted in Fig. 5. Access control system based totally on capability
model is an on-line system as opposed to the off-line feature of PKI model that can turn
on-line during user’s negotiation phase with the resource controller for fine-grained
access controller decisions. Thus, it is important to find a fine trade-off between off-line
and on-line mechanisms in the design of a scalable, fault-tolerant access control system.

It is also important to see that a skillful execution of user rights in a particular se-
quence should not land up the system in unsafe or inconsistent state. By isolating unsafe
execution of sequences of access rights from users and encapsulating a desired sequence
of rights under a newly defined policy, the system can maintain safe protection state.
The encapsulation of rights is achieved by restricting the communication interface of
these access right mechanisms to the domain of encapsulation. A user can only inter-
act with the interface provided by this newly defined access rights mechanism by the
system. A meta-level sequencing is possible using cryptographic tokens/cookies as a
communication parameter between the sequenced chain of access rights.

Immediate revocation of authority, provisions for alternative authorization in emer-
gency, robustness, and fault-tolerance are other important aspects required in an access
control mechanism. Due to lack of space, we shall not describe formal notations of
flexi-acl to handle these aspects. A brief informal description is given in the next sec-
tion using S-expression like notations.

10

5 Towards an Integrated Formalism Specifying Static and
Dynamic Security Requirements

(acl

(subject (name
(hash shal |tY8plW2ryOyQdtgk3190QtR=])
my-group))

(delegate)

(tag (ftp://mil.gov (read write))))

Fig. 6. ACL For Resource ftp://mil.gov

In general, the access control frameworks abstract the users of the system into groups
or roles for the sake of brevity while expressing the access control policies. In doing
so they lose the ability to address the user-specific policies, which is essential in the
long term because Resource Administrator should have methods to immediately revoke
only the non-conforming users from the system, instead of revoking the whole group to
which the non-conforming user belongs. We have elaborated few such scenarios below.
Before that let us give the templates, on which our description is based, describing the
access control policy for resource ftp://mil.gov and an authorization certificate that
allows its recipient to access this resource.

(cert
(issuer (name
(hash shal |tY8plW2ryOyQdtgk3190QtR=])
my-group))
(subject
(hash shal |isEf64Sf5JpgasB4DCsR6Bn=]|))
(not-before "2004-04-01_00:00:00")
(not—-after "2005-05-01_00:00:00"))

Fig. 7. Name/Group Certificate For Resource ftp://mil.gov

Fig. 6 is the access control policy for ftp://mil.gov With two distinct permissions
(read, write). The requester for this resource must prove that it belongs to my-group,
a group defined by the subject principal, listed inside the ACL. Many such local or
extended name definitions may be listed in the ACL.

Fig. 7 shows a membership certificate empowering its subject to ttp://mil.gov With
full permissions automatically. Inheritance of these permissions allow the members of
my-group to delegate the authorizations to others due to presence of (deiegate) flag in
the ACL of resource. Partial delegation of authorization is shown in Fig. 8 (only reaa
permission is delegated to the subject). Authorization certificate is used to transfer au-
thorizations (permission set) and as authorizations are delegated further, the permission
set can only reduce.

11

(cert
(issuer
(hash shal |isEf64Sf5JpgasB4DCsR6Bn=]|))

(subject
(hash shal |ZdtyR5TuOr2sXgtyuoqGbET=])

(delegate) (tag (ftp://mil.gov (read)))

(not-before "2004-04-01_00:00:00")
(not-after "2005-05-01_00:00:00"))

Fig. 8. Authorization Certificate For Resource ftp://mil.gov With read Permission

From this setup, it should be clear that users belonging to the group definition
my-group can access the resource with full permissions (both read and write); however,
the user authorized by the certificate shown in Fig. 8 can access the resource only with
read permission. The Resource Administrator is free to update the ACL as the policy
changes over the period of time. Therefore, the actual permissions available to a re-
quester has to be computed accordingly, which is done by taking the intersection of
permissions listed inside (cag) fields of authorization certificates present in the “certifi-
cate chain”. The subject principal listed in Fig. 8 deduces its authorization proof with
the help of certificates shown in Fig. 6, 7, and 8 accessed in the same order. The actual
set of permissions available to this principal are computed as described below using
AlIntersect (t1, t2) function, where t1 and t2 are (taq) fields from authorization cer-
tificates. Therefore,

Alntersect ((tag (ftp://mil.gov (read write)))), (tag (ftp://mil.gov (read)))) =
(tag (ftp://mil.gov (read)))

Intersection of tag sets:

basic: if t1 == t2, then the result is t1
basic: if t1 1= t2 and neither has a -form, then the result is “nu11”.

— (tag (*)):ift1 == (tag (*)), then the result is t2.
Ift2 == (tag (%)), then the result is t1.

— (* set ...): if some (tag) S-expression contains a (* set) construct, then one
expands the set and does the intersection of the resulting simpler S-expression.

— (* prefix ...):if some (tag) field compares a (+ prefix) to a byte string, then the
result is the explicit string if the test string is a prefix of it and otherwise “nu11”.

Let us study the behavior of Resource Administrator as different policy requirements
gradually arise in the setup.

— Scenario 1: Stop the service to members of my-group defined by public-key
(hash shal |tY8plW2ryOyQdtgk3190QtR=]).
Solution: The Resource Administrator removes the rule that authorizes members of
my-group, from the ACL.

— Scenario 2: Resource ttp://nil.gov NOt in a position to provide write permission.
Solution: The Resource Administrator updates the tag field of corresponding ACL
entry to (tag (ftp://mil.gov (read)))

12

— Scenario 3: Introduce a new permission foo over the resource ttp://mil.gov.
Solution: The Resource Administrator modifies the (tag) field of corresponding
ACL entry to (tag (read write foo)); provided that the (cag) field of user’s autho-
rization certificate is (cag (*)) so that upon taking intersection the effective set of
permissions include foo.

— Scenario 4: Restrict the resource service only to the members of my-group.
Solution: The Resource Administrator removes the delegation flag (delegate) from
the ACL rule for group my-group.

In the above scenarios, the actions of Resource Administrator are enforced on a set of
users in a generalized fashion. Such an approach falls short of expectations when the
change in policy is directed towards a subset of a well-defined group or an individual.
The main reason behind this shortcoming is the inability of the underlying framework to
efficiently capture the system’s state information through just certificates. One solution
is to issue new certificates as and when the state constraint changes. However, this is
too costly and does not serve the rationale of PKIs and further, one need to handle the
problem of revocations.

In our approach towards a flexible access control framework, we integrate a pri-
ori defined heterogeneous e-authentication mechanisms to attain the goals of capturing
state information, instant revocation of authority, fine-grained access control, and pro-
vision for alternate methods of authorization. We also pursue a new approach in cer-
tification mechanism; the authorization certificates under our framework include more
general (and relatively static) permissions inside the (tag) field followed by (), i.e.
(tag (resource (fool barl) (*))). Whereas the (tag) structure of ACL contains a (*)
followed by the set of frequently up-datable permissions over the resource, i.e. (tag
(resource (*) (foo2 bar2))). This approach segregates the more general access policies
(global policy) imbibed into the authorization certificates of the users and access per-
missions that are subject to change depending upon state of the system or context (local
policy) are expressed inside the ACL entries. The effective policy for resource access is
a combination of general policy, specified inside the requester’s credentials, and local
policy specified at the resource in conjunction with the e-authentication mechanisms for
conditional decision making. Another tool in our integrated approach for flexible access
control framework is the tokenization of user credentials. Such an abstraction of user’s
credentials makes the framework modular and efficient, if the trust among the differ-
ent verifiers in the setup is high. Also, the abstraction induces a level of indirection in
user’s authorization proof; thus providing the much needed property for e-transactions
— privacy.

5.1 Access Control Policy Using e-authentication Mechanisms

The communication between the resource requester and the resource is an interactive
process during which the resource controller challenges the requester with access con-
trol rules for the resource. Fig. 9 shows a typical access control policy designed using

13

(flexiacl
(quorum 1
(acl-block Bl
(rule X1) AND (rule X2) AND (rule X3))
(acl-block B2
(rule Y3) OR (rule Y4) AND (rule Y6))))

Fig. 9. flexi-ACL: Typical Structure

heterogeneous e-authentication mechanisms (like pamd, RSA SecurID,biometric,
TCP/IP wrapper etc.) as basic access control rules'. The heterogeneous authenti-
cation mechanisms are glued together using the boolean awp, or operators.

Table 1. AND, OR Operators

I Expression | Description |

(rule X1) AND (rule x2)||returns 1; when evaluate (rule x1) =1
and evaluate (E 1
(rule Y3) OR (rule v4) ||returns 0; when evaluate (rule v3) =0
and evaluate ()y =0

rule X2 , else returns 0

rule Y4 , else returns 1

The heterogeneous primitive access control rules can be aggregated into an aci-block.
Such blocks can be placed under another construct called quorum to achieve a very flex-
ible access control policy expression. Such an unique, modular method of expressing
access control policies allows the Resource Administrator to establish a comfortable
trust or credibility level before making access control decisions. Hence, for the policy
specified in Fig. 9, the requester has to conform to any of the two aci-blocks to get
resource access, since the quorum is set to 1.

In the following, we show features like instant authority revocation, state-based access
decisions, rights amplification, and fine-grained access control that can be effectively
and elegantly addressed in our approach; note that these features cannot be handled in
the existing access control frameworks.

— Scenario 5: Stop providing service to non-conforming users.

Solution: The Resource Administrator simply revokes non-conforming users from
the authentication mechanism. Since the resource has been conditionally integrated
with a priori defined e-authentication mechanism, a non-conforming user can pro-
duce certificate based authorization proof but could not authenticate itself against
the authentication mechanism.

— Scenario 6: A particular user U should not access the resource more than 7 times.
Solution: For such scenarios, the Resource Administrator may integrate the re-
source with an e-authentication mechanism like “one-time password” and issue n
passwords to the user.

! The complete details of flexi-ACL specifications are available in [7]

14

— Scenario 7: Provide more permissions to the users who can satisfy the additional
policy requirements. (rights amplification)

Solution: The Resource Administrator can put the additional policy requirements
in conjunction with the necessary e-authentication mechanism as a conformance
check.

— Scenario 8: Introduce a new permission too over the resource only to certain users.
Solution: The Resource Administrator will create a new rule inside the
(acl-block) in which permission oo is introduced as a new permission under lo-
cal policy but availed to the users who can authenticate themselves against the
e-authentication mechanism integrated with that rule using ano operator.

More complex and flexible policies can be envisaged using our approach. For lack of
space, we will informally describe additional properties like sequential access and al-
ternative/emergency access provisions using an abstract comprehensive scenario in the
next subsection.

5.2 A Comprehensive Scenario

R;; - j" resource at

hierarchy level i

d - delegation depth or
hierarchy level of R;,
andd =1

U - Users of the system

The subscript s denotes
the policy of the resource
U, requires a policy confor-
mance specified elsewhere

Fig. 10. Layered Security Infrastructure

In an environment where the resources are widely distributed and have varying levels
of sensitivity towards unauthorized resource access, a common access control policy
cannot be envisaged due to various reasons. Let us explain a scenario using which we
will demonstrate our framework.

Consider an organization that has installed its resources (R11, Ras, R33s, Ry3 etc.)
in hierarchical layers closely resembling the descending organization hierarchy. The
first subscript of a resource R denotes its placement in hierarchy level, second subscript
denotes its identity number and the third optional subscript indicates sequential access
constraints over the resource (i.e. access request to such a resource should be made after
complying to the policies specified at the resource prior/lower to it in the hierarchy).

Members of the organization are authorized to access the resources lying in their
hierarchical level; conditional access to resources at higher hierarchical levels can be
granted. Also, it should not be possible for a member to lend out its credentials to

15

others. Access to certain resources must start at the lowest level of hierarchy and should
proceed further in strict sequence. The internal network of the organization is assumed
to be a trusted and resource access requests originating from outside the network will
not be honored with full authorization capability. Also, the resources should have the
facility to implement context-based access control policies.

Let the head of the organization be the source of authority. It empowers the subordi-
nates in the immediate hierarchy for accessing the resources and allows further delega-
tion of the authorization. This way the authorization flows from top level of hierarchy
to lower levels. Now let us analyze the constraints and options available to principal U;
for accessing the resource Rio5. As mentioned earlier, the resource subscript s denotes
that it can only be accessed in a particular sequence. The directed paths shown in Fig.
10 are such sequences. Therefore, in the process of accessing resource Rjos:

principal U; has to first comply with policy defined at resource Ry3, which is in-
stalled at third level. R43 issues a token for policy conformance to U;

The signed tokens issued by Ry3 are acceptable as part of authorization proof at
resource Rgo, and R3y,

Similarly, tokens issued by Rss, and R34, are accepted at Rosg

And resource Ry24 accepts only the tokens issued by Ras;

In this fashion, one can deploy a layered access control policies over a large setup. The
concept of tokenization should work across the administrative domains, based upon the
level of trust between the tokenizer and the acceptor of such tokens.

6 Conclusion

In this paper, we have argued the need for a hybrid of digital certificates and other
state based schemes to arrive at flexible distributed access control specifications. We
have designed and experimenting the notations for flexible access control mechanism,
called flexi-ACL [7], to achieve the above mentioned dynamic access control decisions
in distributed systems.

Our access control model allows to make a judicious mix of on-line decision mak-
ing protocols with the underlying off-line framework to capture the dynamics of modern
access control requirements. Inclusion of external authentication mechanisms into the
PKI framework empowers the resource controller to provide fine grained access con-
trol. The ability of resource controller to enforce local access control policies helps the
resource owner in granting discretionary auxiliary rights to users. Such provisions also
allow the resource controller to do rights amplification after a user achieves credibility
by following the respective local policies. This scheme can easily express the com-
plex access control requirements of applications like e-government, work-flow etc. in a
manageable way.

We also observe that in the financial transactions, technical requirements form only
a part of the overall requirements for security. Non-technical aspects include the rep-
utation of the parties involved, liability for misuse, (legal action and stiff penalties for
wrong doing), etc.

16

Acknowledgments

We are grateful to the Ministry of Information Technology, Government of India, for
the support.

References

1. Warwick Ford and Michael S. Baum. Secure Electronic Commerce: Building the Infrastruc-
ture for Digital Signatures and Encryption, Second Ed. Prentice Hall, 2002.

2. Mark Miller and Jonathan Shapiro. Paradigm Regained: Abstraction Mechanisms for Ac-
cess Control. Advances in Computing Science, ASIAN 2003 Programming Languages and
Distributed Computation, LNCS 2896:224-242, 2003.

3. Matt Blaze, Joan Feigenbaum, and Martin Strauss. Compliance Checking in the PolicyMaker
Trust Management System. Financial Cryptography, FC 1998, LNCS 1465:254-274, 1998.

4. Matt Blaze, Joan Feigenbaum, John loannidis, and Angelos Keromytis. The KeyNote Trust-
Management System Version 2. RFC 2704, Internet Engineering Task Force, 1999.

5. David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and R. Chandramouli.
A Proposed Standard for Role-Based Access Control. Technical report, NIST, Dec 2000.

6. Carl Ellison, Bill Frantz, Butler Lampson, Ronald Rivest, Brian Thomas, and Tatu Ylonen.
SPKI Certificate Theory. RFC 2693, Internet Engineering Task Force, Sep. 1999.

7. Vishwas Patil and R.K. Shyamasundar. Notations for Flexible Access Control System: flexi-
ACL. Technical report, Tata Institute of Fundamental Research, 2003.

8. Ronald Rivest and Butler Lampson. SDSI — A Simple Distributed Security Infrastructure.
Presented at CRYPTO’96 Rumpsession, 1996.

9. Carl Ellison. SPKI/SDSI Certificate Documentation, 2002.
http://world.std.com/ cme/html/spki.html.

10. Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt Fredette, Alexander Morcos, and
Ronald Rivest. Certificate Chain Discovery in SPKI/SDSI. Journal of Computer Security,
9(4):285-322, 2001.

11. Mark Miller, Chip Morningstar, and Bill Frantz. Capability-Based Financial Instruments.
Financial Cryptography, FC 2000, LNCS 1962:349-378, 2001.

12. Stefan Brands. Rethinking Public Key Infrastructures and Digital Certificates; Building in
Privacy. MIT Press, 2000. ISBN 0-262-02491-8.

2 This document is a draft of the work undergoing on Notations for Flexible Access Control
System: flexi-ACL

