Multiple electronic signatures on multiple documents

Antonio Lioy and Gianluca Ramunno

Politecnico di Torino
Dip. di Automatica e Informatica
Torino (Italy)

Abstract. European, international and Internet standards are available to support
electronic signatures. The most common signature formats are defined via the
ASN.1 syntax with DER encoding, or the XML language. Furthermore PDF is a
widespread document format with support for e-signatures. Application of signa-
tures to e-documents must consider several aspects: long term signature validity,
non-repudiation, qualified certificates, and many others. This paper focuses on the
relationships among multiple documents and multiple signatures and analyses the
support provided by current formats to this problem. Where lack of standardiza-
tion or standard profiling is found, a proposal is made towards better application
of e-signatures.

1 Introduction

It’s a common belief that the field of electronic signatures (in short e-signatures) is an
already established one. While this is true for the basic technical and legal foundations,
we believe that many aspects have still to be investigated and properly defined. In partic-
ular, the flexibility and richness of signature and documents in the paper world are still
unmatched, and this can cause unexpected problems in real-life applications. In this pa-
per we focus on the problems related to multiple signatures on the same document (as in
the case of countersignatures), signature of document parts or of multiple documents.
The complex relationships between multiple signatures and documents are explored,
with reference to the major formats, to identify problems and suggest solutions that can
improve the practical applicability of electronic signatures.

ISO defines [1] digital signature as “Data appended to, or a cryptographic trans-
formation of, a data unit that allows the recipient of the data unit to prove the source
and integrity of the data unit and protect against forgery e.g. by the recipient.” This
definition is neutral from the technology point of view — for example, it can be imple-
mented with asymmetric encryption or with a Message Authentication Code — and is
also neutral with respect to the signer, that can be a machine or a human being. The
e-signature definition in the European Directive [2] is also technologically neutral but
is related to a specific type of signer: a (natural or legal) person. The same Directive de-
fines an “advanced electronic signature” as a subset of the e-signatures and is equivalent
to the ISO definition of digital signature. We can therefore state that a digital signature
is an e-signature, when related to a person.

Lioy A. and Ramunno G. (2004).

Multiple electronic signatures on multiple documents.

In Proceedings of the 1st International Workshop on Electronic Government and Commerce: Design, Modeling, Analysis and Security, pages 24-34
DOI: 10.5220/0001405300240034

Copyright © SciTePress

85

Since the term “electronic signature” is more closely related to the transposition
of the handwritten signatures in the electronic world, we prefer this term over “digital
signature”. However when we’ll need to refer to specific aspects of a digital signature,
this term will be used. If not differently specified, in this paper a digital signature is
always implemented via asymmetric encryption.

2 E-signatures and e-documents in real contexts

The simplest use of an e-signature is its application to a single document. However, the
real use cases in the paper world are more complex. To gain widespread acceptance,
e-signatures should support applications as complex as those supported by handwritten
signatures. We will analyse this problem by looking at two of its more complex facets:
multiple signatures and multiple documents.

2.1 Relationships among signatures

Several different signatures can be applied at the same time to a single document. De-
pending on the fact that the order of the signatures is important or not, two categories
can be defined: independent (i.e. parallel) signatures and countersignatures (wrapping
and overall signatures).

Independent signatures on a single document do not depend on each other. They
are also called “parallel” as they can be computed simultaneously. From a functional
perspective, these signatures can be considered as created at the same time even if in
practice they aren’t; anyway, it doesn’t matter which signature is created first. In terms
of digital signatures, independent signatures are generated by computing a signature
algorithm with different keys on the same digest computed over the document being
signed (Fig. 1-a).

Countersignatures must be considered in pairs: the embedded signature (the first
one in time) covers the document, while the wrapping signature (the second one) covers
both the document and the first signature. Many countersignatures can be applied to the
same document, each one wrapping the previous one that becomes embedded. In terms
of digital signatures, two different forms of countersignatures exist: in the first one, the
digest of the wrapping signature is computed only over the embedded signature (Fig. 1-
b), while in the other the digest of the wrapping signature is computed over both the
embedded signature and the document (Fig. 1-c). To distinguish between the two forms
of countersignatures and according to [3], for the rest of this paper we will talk about
independent signatures, wrapping/embedded signatures and overall signatures.

An example of wrapping/embedded signature is the signature carried by the coun-
terSignature attribute defined by CMS [4] and supported by ETSI [5]. Examples of
overall signatures are those implemented by nesting several S/MIME objects [6] and
the time-stamps (repeatedly) applied to a signature for long term validation as in the
ETSI ES-A format.

The distinction between wrapping and overall signatures makes sense only in the
electronic world and only when implemented as digital signatures. In the real world,
a handwritten counter-signature on a paper document is implicitly applied both to the

86

‘ document ‘ ‘ document ‘ ‘ document ‘

i [

signature #1 ‘ signature #1 ‘

e

signature #2 ‘

signature #2 ‘

signature #1 ‘ signature #2 ‘

I

signature #n signature #n | signature #n |
A S9ns o a)independent b) wrapping c) overalf
signatures signatures signatures

Fig. 1. Independent, wrapping and overall signatures

signature document
| document |
i document | ! y document
: | i data |
| sign. data | . signature signature
enveloping enveloped detached
signature signature signature

Fig. 2. Signatures-documents relationships

existent signature(s) and to the document. Moreover, from a semantic point of view, the
wrapping and overall signatures perform the same function as both sign the document
with the previous signature(s): the wrapping signature does it indirectly (via a signature
chain) while the overall signature does it directly (by an encapsulation procedure).

The three basic relationships among electronic signatures can be used to build any
complex set of relationships among any number of signatures.

2.2 Signature-document relationships

By looking at the relationship between the signature and the document being signed, it
is possible to classify signatures as enveloped, enveloping and detached (Fig. 2). An en-
veloped signature is embedded within the document. An enveloping signature contains
the document. In both cases, the signature and the document are stored together in the
same “envelope”, while a detached signature is stored separately from the document
being signed.

2.3 Multi-part documents / dossiers

Another relationship is the one among documents or parts of them. Documents related
to a single topic or file can be grouped in a unique dossier (Fig. 3-a). Moreover, depend-
ing on the application, some documents may require to have many signatures, each one
applied to a single part of the document (Fig. 3-b).

87

dossier document

a) dossier b) muitipart
document

Fig. 3. Dossiers and multi-part documents

An electronic dossier can be implemented in different ways. One of them is by cre-
ating a multi-part MIME [7] object, where each document is a MIME part. Another
way is by linking together the dossier documents via an indirect digital signature. To
calculate this signature the document digests must be concatenated and a digital signa-
ture computed over them. This cryptographically binds the documents together even if
they are physically stored separately.

The implementation of a multi-part document to allow signing each part individ-
ually, is strictly related to the document and signature formats. The document format
must support a method to identify the boundaries of each part, while the signature for-
mat must support a mechanism to clearly store these data.

3 Current formats for electronic signatures

By combining the basic relationships (signatures-signatures, signatures-documents and
documents-documents) it is possible to create in the electronic world the variety of
real cases found in the paper world. However, the current e-signature formats give a
limited support to these schemes. In general they work well with one document and one
signature but hit limits when creating complex schemes. In the next sections we will
analyse some widespread e-signature formats from the perspective of the relationships
among e-signatures and e-documents.

3.1 Cryptographic Message Syntax (CMS)

CMS is a multi-purpose format for cryptographic services: it supports digital signatures,
Message Authentication Codes, encryption, etc. Here we will consider only the signed-
data content type. CMS is specified by ASN.1 [8] with data encoded via DER [9]. The
SignedData content type supports many signers (signerinfos) of the same content
(encapContentinfo). This basic structure (Fig. 4-a) makes easy creating multiple in-
dependent signatures. Among the data included in each signer’s structure (Signerinfo),
there are signed (signedAttrs) and unsigned (unsignedAttrs) attributes. The former
are covered by the digest in the signature and are used to cryptographically bind some
data to the content. Therefore the signed attributes can’t be modified later without inval-
idating the signature. On another hand, the unsigned attributes are used to transport data

88

document le document
(encapContentinfo) (encapContentinfo)

| other data (certs, crls,...) |

| other data (certs, cris,...) !

digests
digests

S |signatureValue

Signerinfo # 1

digests

Signerinfos
CMS signedData CMS signedData
a) general structure b) per-signer countersignature

Fig. 4. CMS signed-data

that don’t need to or cannot be signed (e.g. a counter-signature that can be generated
only after the generation of the first signature). If the signedAttrs structure is present, at
least two signed attributes must be present: content-type and message-digest. The for-
mer carries the type of data being signed, while the latter contains the digest computed
only over the document.

Signatures relationships. The signed-data format natively supports several indepen-
dent signatures. Furthermore CMS defines the Countersignature unsigned attribute
that contains a countersignature (Fig. 4.b). Since attributes are per-signer, the coun-
tersignatures are per-signer in either form, wrapping or overall. Therefore a signature
that countersigns two independent signatures is not supported by CMS but by nesting
several signed-data envelopes. In this case, the inner object contains the independent
signatures and becomes the “document” being signed of the outer CMS object. The
latter will include only one signature that represents the countersignature in the overall
form. Nesting CMS objects is the S/MIME approach for digital signature and message
encryption.

Signatures-documents relationships. CMS supports only enveloping and detached
signatures: the former when the structure encapContentinfo contains the document
being signed, the latter when this structure is empty.

Multi-part documents and dossiers relationships. The document can be in whatever
format, as it is considered a single binary object (a “blob”). Even if the possibility
of signing only a specific part of a document depends on the document format, CMS
doesn’t provide any support to include the reference to a document fragment, in order to
signal that only a fragment has been signed. Furthermore CMS doesn’t provide native
support for signing dossiers.

89

3.2 XML Signature (XMLdsig)

XML Signature [10] is the format designed to support digital signatures encoded via
XML. No other security service is supported. This format is an XML application, de-
fined by using the Document Type Definition (DTD) syntax and the XML Schema
language [11].

XMLdsig has been designed to support any document format: a document in a
generic format is considered as a single blob while special procedures are used when
signing XML documents. In fact several forms of an XML document with the same
semantics may exist. These forms have a different binary representation but the same
logical representation, such as the DOM [12] node tree generated by a parser. Different
binary representations lead to different digests and consequently to different signature
values. Therefore, before being signed, an XML document must be transformed into a
canonical representation by using a proper algorithm, such as C14n [13]. Moreover a
generic transformation - such as an XSLT [14] one - could have been applied over the
document before being signed. XMLdsig takes into account these issues: the canonical-
isation algorithms and pre-signature transformations are specified within the signature
structure and are signed together with the document.

XMLdsig is an indirect signature: it is implemented by calculating an overall digest
over the set of the digests computed on each document being signed. Complex schemes
with more than two levels of digest calculation are also supported. This core structure,
the intrinsic nature of XML and the extensive use of URIs to refer to the data covered
by the digital signature make XMLdsig capable to sign multiple documents, parts of
documents, or documents stored elsewhere and accessed through a reference (URI), as
well as to flexibly control how a signature has to be validated.

The main elements of XMLdsig are:

- <Signedinfo> references the documents being signed and their digests;
- <SignatureValue> is the signature computed by applying a digital signature al-
gorithm to the digest of the canonicalised <SignedInfo> element;
— <Object> is an optional element that can appear in multiple instances to include
any data type; it is generally used to:
e carry the document being signed in the case of enveloping signatures
e carry some signature properties or assertions as <SignatureProperties> to
be optionally signed together with the documents
e carry one or many <Manifest> objects
— <Manifest> is an optional element very similar to <SignedInfo> (it can include
references to the documents being signed and their digests) but has a different se-
mantics in the signature validation process, described later.

The basic structure of an XML signature is given in Fig. 5 including the digest cal-
culation while the various transformations and the structure carrying the signer’s key
data are omitted. The validation of an XML signature containing only the mandatory
<Signedinfo> must be performed as follows:

1. check that every reference within <SignedInfo> is valid
2. re-calculate the digests over every referenced document and verify that they match
with the ones stored within <SignedInfo>

90

» XML root document

XML document # 1

XML document # 2

Blob document # 1

Blob document # 2

<SignatureValue> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

<Signature>) “A'Blob document #n'!
digest H
XML document A g B leeemeeemereeeseemessseseend :

Fig. 5. XML Signature general structure

3. re-calculate the digest over the <SignedInfo> after having applied the transfor-
mations specified within the same element

4. use this digest and the signature as input of the proper verification function of the
chosen signature algorithm.

A scheme that includes <Object> and <Manifest> is shown in Fig. 6. When the
<Manifest> is present within <Object>, the reference to <Manifest> is included
within <SignedInfo>. During signature validation, the latter is a reference to be manda-
tory checked together with the related digest while the verification logic of the ref-
erences in <Manifest> is left to the application: it can check all the references and
digests, only part of them or none.

More complex schemes can be implemented by hierarchically nesting multiple
<Manifest> up to the last one that is referenced within <Signedinfo>.

It is also possible to have any number of <Object>, each one including any number
of elements of any type. The elements to be signed must have the “id” attribute and the
related reference inserted into <SignedInfo> or <Manifest>>. The reference is an URI
with the fragment identifier equal to the value of the “id” attribute. XMLdsig provides
very powerful and flexible mechanisms. However it doesn’t natively offer standardized
structures to support signed and unsigned attributes as CMS does. Furthermore CMS
defines a wide set of attributes that can be used. Therefore we can say that XMLdsig is
at a lower functional level than CMS.

Signatures relationships. XMLdsig doesn’t provide any native support for indepen-
dent signatures and countersignatures but, given its flexibility, it allows the implemen-
tation of countersignatures in both forms. Wrapping signatures can be implemented
by placing an XML signature object within an <Object> element of a signature ap-
plied to a number of documents. The value of the inner signature is computed over the
<SignatureValue> of the outer signature. Overall signatures can also be easily im-
plemented by nesting the signatures in a manner similar to S/MIME. In both cases the
definition of a profile of the XMLdsig specification can help to implement the coun-
tersignatures in a standard way.

91

digest on ref. XML 1
digest on ref. Blob 1
. digest on ref. XML 3 —t

igest on ref. sigProp =

XML document # 1

al|[&

&
®
v
4
e
£
2
o
=
B
=L
T
@
4=

]

<Signedinfo>

digest on ref. XML 2
digest on ref. Blob 2
<Manifest>

SignatureProperty # 2
<SignatureProperties>
other unsigned data Blob document # 1
XML document # 3 —
<Object>

<SignatureValue> digest

<Signature> A—»B

Blob document # 1

A

XML document # 2

+
[

/7

Fig. 6. XML Signature with Object and Manifest

Signatures-documents relationships. XMLdsig supports all the signatures-documents
relationships. Enveloping and detached signatures can be applied over any kind of doc-
ument, while the enveloped signature applies only to XML documents. In fact an XML
signature can be placed within an XML document and the <SignatureValue> can be
computed over a portion of the document as it can occur when signing document frag-
ments (see next subsection). The signature is enveloped because the root element of the
document substantially wraps the signature.

Multi-part documents and dossiers relationships. The core syntax and processing
of the XMLdsig specification natively support the signature applied over a number of
documents (dossiers). It is also possible to sign parts of documents if the format of
the document being signed supports the selection of document portions by means of
fragment identifiers compatible with the URI syntax. HTML, XML and XHTML are
examples of such document formats: the fragments are identified by the “id” attribute
of the tag enclosing the portion being signed, according to the syntax in [15, 16].

3.3 Portable Document Format (PDF)

PDF [17] is a widespread proprietary format for electronic documents whose specifica-
tion is publicly available. It supports electronic signatures but only the enveloped type,
due to its nature of document format. A PDF document is stored in the file as a col-
lection of objects (e.g. the pages) organized in a hierarchical structure. The support for
electronic signatures was first introduced in PDF v. 1.3. The signature can be computed
over many byte ranges of the PDF file and it is stored in a structure called “signature
dictionary”. In the latest version of PDF (v. 1.5) a new digest mechanism has been
added. Now it is possible to calculate a digest over an object or an object hierarchy, as
they are or after being transformed: for example it is possible to apply a selective digest
to include certain object types and to exclude other one. In this way it is possible to
implement schemes as the one where an author creates a form to be filled and signs it

92

excluding the empty fields from the signature. Later a user can check the signature to
authenticate the form and then fill the form and sign the whole resulting document.

Among the properties signed with the document, there is the registered name of
the signature handle, that is the application that generated the signature and that should
verify it later on.

The PDF features related to the e-signatures are numerous and very flexible. As for
XMLdsig, these basic mechanisms can be considered as powerful building blocks to
implement complex signature schemes. However the PDF specification doesn’t provide
any predefined scheme. Each signature handler, as the signature plug-ins for the Acrobat
product, can implement its own set of signature schemes.

Signatures relationships. Since it is possible to sign any physical portion of the PDF
file, any number of independent signatures are supported. Moreover, since a signature
is contained within an object (the signature dictionary) that can be in turn signed, PDF
supports countersignatures too.

Signatures-documents relationships. PDF supports only enveloped signatures.

Multi-part documents and dossiers relationships. PDF signatures are applied only to
the content of the file containing the signature itself.

3.4 ETSI e-signature formats

ETSI has defined two specifications for “Electronic Signature Formats” fully equivalent
from the functional point of view: one [5] uses the DER encoding and is based upon
CMS, while the other [18], called XAdES, uses the XML encoding and it is based upon
XMLdsig.

The DER-encoded formats don’t offer any additional feature for multiple signatures
and documents over the ones already provided by CMS. Instead, in order to be equiv-
alent to the DER-based format, the XAdES specification supports new structures and
functions, as the unsigned attributes and specifically the countersignature one, not na-
tively provided by XMLdsig. This is caused by the fact that CMS and XMLdsig are
structurally different and XMLdsig is at a lower functional level than CMS.

4 Proposals

4.1 Cryptographic Message Syntax

To give CMS the capabilities to manage signatures on multiple document, we exploit
the fact that the data being signed can be a MIME object with multipart/mixed media
type. Each document to be signed can be included within a part of the MIME object. By
signing this object, a signature over several documents is applied, either as enveloped
or detached signature, depending if encapContentlInfo includes the MIME object or is
empty.

This proposal can be improved to implement features similar to the ones of Mani-
fest in XMLdsig.

93

Content-Type: multipart/mixed;
boundary="-----aaaaa”

Content-type: message/external-body;
access-type=URL;
URL="http: //www.polito.it/docl . xml” -

Content-Transfer-Encoding: binary
Content-type: text/xml

X-Content-Digest: bdd06cb79cdach23ce78597d2db18997

K-Content-Digest-Algorithm: mdS
K-Content-Transformation: Cldn _»| doc2.doc

Content-type: message/external-body;
access-type=URL; S
URL="http://www.polito.it/doc2.doc” -~

TITa doct.xmi

Content-Transfer-Encoding: binary
Content-type: application/msword
X—Content—Da:.gest: 0dd3(_)20 9655d8kE80bdS www.polito.it
X-Content-Digest-Algorithm: mdS

MIME multipart/mixed object
{within CMS encapcontentinfo)

Fig. 7. Proposal for multi-part MIME object

Each part of the MIME multi-part object can be of type message/external-body
to reference the documents rather than including them. By using the URL Access Type
[19] it is possible to refer to the external documents through the URIs. Moreover, if the
format of the documents supports a method compliant with the URI syntax to identify
the document fragments (as occurs with HTML, XML and XHTML) it is also possible
to sign document fragments.

To complete the proposal, three header fields should be defined to be used within
each message/external-body envelope: X-Content-Digest, X-Content-Digest-Algorithm
and X-Content-Transformation (optional). In this way it is possible to specify the di-
gest computed over each document being signed, after having optionally transformed
it via the X-Content-Transformation. The MIME object should be transformed into
a canonical form as described in [20] before being signed. The CMS signature com-
puted over the described MIME object implements an indirect signature over multiple
documents. The signature verification would be similar to the one done over the XMLd-
sig <Manifest>: the verification of the references to the documents and their digests
would be left to the applications while the verification of the signature over the MIME
object would be mandatory. An example of the complete proposal is shown in Fig. 7.

4.2 XML Signature

XAdES builds many structures upon XMLdsig to support most of the requirements
given in section 2. Therefore no proposal is given but it would be useful if XAdES
would become a true international specification as complement of XMLdsig. This could
be achieved by the future ETSI/W3C joint group.

94
5 Conclusions

Although many formats for e-signatures are available, this paper shows that, for practi-
cal applications, there are aspects to be further specified to implement complex schemes
with multiple signatures and documents. Therefore profiles should be produced to de-
fine complex schemes in a standardized way. Some proposals (for CMS and XML) have
been given in this paper.

References

1. ISO/IEC 13888 (1997). Information technology - Security techniques - Non-repudiation.
2. EU El-Sign Directive (1999). Directive 1999/93/EC of the European Parliament and of the
Council of 13 December 1999 on a Community Framework for Electronic Signatures.

3. CEN/ISSS CWA 14171 (2004). CWA 14171 - General Guidelines for Electronic Signature
Verification.

. RFC-3369 (2002). Cryptographic Message Syntax (CMS).

. ETSI TS 101 733 (2004). Electronic Signature Formats.

. RFC-2633 (1999). S/MIME Version 3 Message Specification.

. RFC-2046 (1996). MIME Part Two: Media types.

. ITU X.680 (2002). Information technology - Abstract Syntax Notation One (ASN.1): Spec-
ification of basic notation.

9. ITU X.690 (2002). Information technology - ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules
(DER).

10. RFC-3275 (2002). XML-Signature Syntax and Processing.

11. W3C Recommendation XMLSchema (2001). XML Schema.

12. W3C Recommendation DOM (2004). Document Object Model (DOM) Level 3.

13. W3C Recommendation C14n (2001). Canonical XML Version 1.0.

14. W3C Recommendation XSLT (1999). XSL Transformations (XSLT) - Version 1.0.

15. RFC-2854 (2000). The “text/htm]” Media Type.

16. RFC-3236 (2002). The “application/xhtml+xml” Media Type.

17. Adobe PDF v. 1.5 (2003). PDF Reference, fourth edition - Adobe Portable Document For-
mat.

18. ETSITS 101 903 (2004). XML Advanced Electronic Signatures (XAdES).

19. RFC-2017 (1996). Definition of the URL MIME External-Body Access-Type.

20. RFC-2049 (1996). MIME Part Five: Conformance criteria and examples.

0 J N LA

