
A NEW MODEL TO MANAGE IDS ALERTS

Marco Aurélio Bonato, Walter Godoy Jr.
Centro Federal de Educação Tecnológica do Paraná, Av Sete de Setembro 3165 , Cep: 80.230-901, Curitiba, Paraná,

Brasil

Keywords: Network security, Intrusion Detection System, IDS

Abstract: The goal of this paper is to present a new model to reduce the alerts generated by an IDS (Bace, 2000)
analyzer. This model allows the administrator to analyze only the messages that really generate risks for an
environment or machine. This is very important when you have a complex environment with a lot of
machines with many services in them.

1 INTRODUCTION

One of the biggest problems in IDS administration is
the generation of false positive alerts or alerts that do
not bring risks to an environment or machine. One
false positive alert occur when normal packages are
identified as attacks. In a complex environment of
intrusion detention, a large number of alerts of this
kind can harm the analysis of true attacks.

The configuration of any type of analyzer is a
complicated task because it demands from the
administrator deep knowledge in protocols,
applications and attacks format. However, if the
administrator is able to make this administration
through a friendly platform, the analyzer can detect
all the alerts, the filtering being made in the
configuration of the profile of each
network/machine. This platform is represented as an
object oriented model (UML representation) (OMG,
2003) and has three parts. The first part show one
model to represent the environment or machine, the
second part show the way that the attacks database
must be organized to facilitate the analysis, and the
third part is the program that analyzes the alerts.
This program uses the environment definition plus
the attacks database to define if the alerts bring risks
to the environment or machine.

2 ENVIRONMENT

The Environment class (Figure 1) defines the
environment where the analyzer is installed.
Through this class and its aggregations it is possible
to create a profile for each computer or network.

The Environment class has four attributes:
description (optional) - one brief description about
the environment; location (optional) - the location of
the environment; address (required) - the
environment network address; netmask (optional) -
the network mask for the address.

2.1 The Analyzer class

The Analyzer class identifies the analyzer that is
installed in the environment. This class is defined in
(Curry, 2002).

2.2 The Node class

The Node class is used to identify hosts and others
devices. In this case it is used to identify the hosts
that belong to an environment.

601
Aurélio Bonato M. and Godoy Jr. W. (2004).
A NEW MODEL TO MANAGE IDS ALERTS.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 601-604
DOI: 10.5220/0002599706010604
Copyright c© SciTePress

The Node class has two attributes: ident
(optional) - a unique identifier for the node; category
(optional) - the “domain” from which the name
information was obtained, if relevant. The permitted
values for this attribute are showed in (Curry, 2002).
The default value is “unknown”. The Node class has
two simple aggregated classes that are defined here:
location (zero or one – STRING) - the location of
the equipment; name (zero or one – STRING) - the
name of the equipment.

The Address class is used to represent the
network address for a node. This class is defined in
(Curry, 2002).

The Platform class is used to define the node
characteristics. This is useful because some attacks
are targeted only to some specific platforms. The
Platform class has three attributes: name (required)
the platform name. Examples: Intel, Hp, Sun, etc.;
model (optional) - the platform model; manuf
(optional) - the manufacturer of the platform.

The OS class is used to define the operational
system installed in the platform. This is useful
because some attacks are targeted only to some

specific operational systems. The OS class has three
attributes: name (required) - the OS name.
Examples: Unix, Linux, Windows, etc.); version
(required) - the OS version; manuf (optional) - the
manufacturer of the OS; release (required) - the
current operational system release.

 Node

 STRING ident
 ENUM category

 location
0..1

 name
0..1

 Adress

 Platform

Environment

 STRING description
 STRING location
 STRING address
 STRING netmask

 Analyzer
1..*

 Services

0..*

0..*

 STRING name
 STRING model
 STRING manuf

 OS
 STRING name
 STRING version
 STRING manuf
 STRING release

1..*

 Service

 STRING name
 STRING port
 STRING action

*..1

1..*

 Classification

 STRING first_group
 STRING second_group
 STRING third_group
 STRING fourth_group
 STRING action

1..*
 Object

 STRING name
 STRING version
 STRING action

 Patch
 STRING date
 STRING patch

The Patch class is used to define the patch that
has been applied to the operational system. This is
useful because some attacks are targeted only to
some specific operational systems versions. Some
patches correct vulnerabilities, so it’s important to
know this information. The Patch class has two
attributes: date (required) - the date on which the
patch was applied to the operational system; patch
(required) - what is the patch that was applied -
version, name, number, etc.

2.3 The Service class

The Service class is used to define the service that is
being executed. This service can be associated to an
environment or to a single machine. The Service
class has three attributes: name (required) - the
service name. Examples: Web, Ftp, Telnet, etc; port
(required) - the tcp/udp port which is being used by
the service; action (required) - what to do with the
alerts that are being received by this
machine/service, “accept” or “reject”.

The Classification class is used to define the
service classification. This is used to detail the
service. The Classification class has five attributes:
first_group (required) - the first classification.
Examples: for the service Web we can use Apache,
IIS, Netscape, etc. The service that does not have a
specific classification receive “general” for this
attribute; second_group (optional) - the second
classification, if necessary. Examples: For the
service Web, first classification IIS we can use
FrontPage as a second classification; third_group
(optional) - the third classification, if necessary;
fourth_group (optional) - the fourth classification, if
necessary; action (required) - what to do with the
alerts that are being received by this
machine/service/classification, “accept” or “reject”.

Figure 1: The Environment Class.

The Object class is used to define the service
object. The Object class has three attributes: name
(required) - the object name. Examples: for the
service Web we can use Apache for the first
classification and we can define the object httpd;
version (required) - the current object version; action
(required) - what to do with the alerts that are being
received by this machine/service/classification/
object, “accept” or “reject”.

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

602

3 ATTACK

The Attack class (Figure 2) identifies and organizes
the atack information. With the environemnet
information (Environment class) and the atack
information (Atack class), it becomes more easy to
administer and minimize alerts. The environment
caracteristics are compared with the attack database
to verify if the alert brings risks to the environment
or machine.

The Attack has two attributes: name (required) -
a generic name to the attack; severity (optional) - the
risks that the attack can cause to the environment or
machine. The permitted value for this attribute are:
0(low risk) 1(medium risk) 2(high risk).

3.1 The Ident class

The Ident class is used to determine for each unique
attack its relationship with all databases notification
attacks available in the Internet. For each one of
these databases there is a description and a specific
identification. Examples of attacks databases are:
Bugtrap (Bugtrap, 2003), Cve (Cve, 2003), Nessus
(Nessus, 2003), Arachnids (Arachnids, 2003), etc.

The Ident class has four attributes: name
(required) - the database name. Examples: Bugtrap,
Cve, etc); ident (required) - the attack identification
on this database; p_date (required) - the date on
which the attack information was registered in this
database; u_date (optional) - the last updated
information about the attack.

The Ident class has one simple aggregated class
that is defined here: url (one or more – STRING) -
the url that one person can use to find information
inside the database.

3.2 The More_information class

The More_information class is used to determine
where the security administrator can find more
information about this atack. This class can receive
any information. For example, a url.

Attack

 STRING name
 STRING severity

 More_information

1..*

0..*

 Exploit

 Solutions

1..*

Ident
 STRING name
 STRING ident
 STRING p_date
 STRING u_date

Affected_Service

 STRING name
 STRING 1o_group
 STRING 2o_group
 STRING 3o_group
 STRING 4o_group

0..*

0..*

1..*

Version
 String version

1..*
Object

 STRING nome
 STRING objeto

1..*

 url
1..*

Affected_Platform

 STRING name
 STRING model
 STRING manuf

1..*
OS
 STRING name
 STRING version
 STRING manuf
 STRING release

 Patch *..1

3.3 The Affected_Service class

The Affected_Service class is used to identify the
service that is affected by the attack. The
Affected_Service has five attributes: name
(required) - the name of the service. Examples: Web,
Ftp, Telnet, etc; first_group (required) - the first
classification. Examples: for the service Web we can
use Apache, IIS, Netscape, etc. The service that does
not have a specific classification receive “general”
for this attribute; second_group (optional) - the
second classification, if necessary. Examples: For
the service Web, first classification IIS we can use
FrontPage as a second classification; third_group
(optional) - the third classification, if necessary;
fourth_group (optional) - the fourth classification, if
necessary.

The Object class is used to identify the object
that is affected by the attack. The Object class has
two attributes: name (required) - one generic name
for the object; object (required) - the object.
Examples: htpd, ftpd, fingerd.

The Version class is used to determine for a
specific object which versions are vulnerable for this
attack. The Version class has one attribute: version
(required) - the version of the object that is
vulnerable for this attack. If any version is
vulnerable, the value “any” appears in the attribute.

Figure 2: The Atack Class.

The Affected_Platform class is used to
determine for a specific object/version which are the
platforms that are vulnerable for this attack. Some
attacks are only applied for some specific platform.
The Affected_Platform class has three attributes:
name (required) - the platform name. Examples:
Intel, Hp, Sun, etc. If any platform is vulnerable, the
value “any” appears in this attribute; model

A NEW MODEL TO MANAGE IDS ALERTS

603

(optional) - the platform model; manuf (optional) -
the manufacturer of the platform.

The OS class is used to define for a specific
object/version/platform which are the operational
systems that are vulnerable for this attack. Some
attacks are targeted only to some specific operational
systems. The OS class has three attributes: name
(required) - the OS name. Examples: Unix, Linux,
Windows, etc. If any OS is vulnerable, the value
“any” appears in this attribute; version (required) -
the OS version; manuf (optional) - the manufacturer
of the OS; release (optional) - the current operational
system release.

The Patch class is used to define for a specific
object/version/platform/os which are the patches that
are vulnerable for this attack. The Patch class has
one attributes: patch (required) - the patch that is
vulnerable. If every patch is vulnerable, the value
“any” appears in this attribute.

3.4 The Exploited class

The Exploited class (STRING) is used to define how
the vulnerability was explored to generate this
attack.

3.5 The Solution class

The Solution class (STRING) is used to define how
the vulnerability can be corrected and the initial
proceedings to stop the atack.

4 THE TESTS

For the tests we made two information collections in
a network with approximately 50 machines using a
Snort IDS sensor. This sensor was configured to
generate all possible alerts.

After collecting the data we got 5 machines
(10%) to create the machines caracteristcs. The
profiles were converted to a group of rules. One of
them is detailed in Figure 3.

This machine has only three services running.
One Netscape Web Server, one FTP Server (nom
anonymous) and one Radius Server. The only cgi
(common gateway interface) installed in the Web
Server is the “count.cgi” (version 2.5) that is used to
count pages access. The machine platform has the
characteristics shown below:

Platform name: HP model: Risc
 Operational System name: hp-ux version:

11.00 release: A
For all rules is applied the environment

characteristics to filter the attacks that are specific
for this platform/os. Without this group of rules the
security administrator has 4.605 alerts to analyze.
Applying the rules remained 3 alerts with 21
occurrences.

 We made the same test to five others machines.
The results are shown below.

Figure 4: Testes resume – two collections

5 CONCLUSIONS

This technique to reduce IDS alerts is only applied
to attacks that have as target the computer/network
services.

We have to do more tests in this model to find
problems and improve the functionality. We think
that this is one way to reduce the excessive number
of alerts generated when you have to administer the
security of a great network with a large number of
machines.

REFERENCES

ArachNIDS, 2003. http://www.whitehats.com.
Bace, Rebeca and Mell, Peter, 2000. NIST Special

Publication on Intrusion Detection Systems.
Bugtrap, 2003. http://www.securityfocus.com/.
Curry, D and Debar, H.,2002. Intrusion Detection

Message Exchange Format data model and Extensible
Markup Language (XML) Document Type Definition.

CVE – Common Vulnerabilities and Exposures, 2003.
http://cve.mitre.org.

Figure 3: Rules based on machine characteristics Nessus, 2003. http://www.nessus.org/.
Object Management Group, 2003. UML – Unified

Modeling Language.

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

604

http://www.securityfocus.com/
http://cve.mitre.org/
http://www.nessus.org/

