RESOURCE SHARING AND LOAD BALANCING BASED ON

Keywords:

Abstract:

AGENT MOBILITY

Gilles Klein
LAMSADE - University of Paris IX
Place du Maréchal de Lattre de Tassigny, 75016, Paris

Alexandru Suna, Amal El Fallah-Seghrouchni
LIP6 - University of Paris VI
8, Rue du Capitaine Scott, 75015, Paris

Mobile Agents, Agents for Internet Computing, Load Balancing and Sharing, Agent-Oriented Programming.

From the recent improvements in network and peer-to-peer technologies and the ever-growing needs for com-
puter might, new ways of sharing resources between users have emerged. These methods are very diverse,
from SETI@HOME which is a way to share the load of analysing the data from space in order to find traces
of extraterrestrial life, to NAPSTER and its successors, and to Real-time video-games. However, these tech-
nologies allow only centralised calculus-sharing, even if they already offer “peer-to-peer” sharing of data. We

present in this paper a method based on Multiagent systems which allow load-sharing between distant users.

1 INTRODUCTION

As the power of computer processors keeps growing,
it appears that whatever the power of the computers
is, it is never enough, as computer software is al-
ways more demanding. Even if it is now common
to own a computer, the most powerful ones are still
out of reach of most of the users. As distributed ap-
plications become very common (multiplayer games,
for example), network-based sharing technologies are
still limited to very specific applications (like peer-
to-peer sharing systems). Even the great societies
could vastly profit from it, simply because the com-
puter resources of multinational groups are always
underused. As a matter of fact, as these resources
are distributed all around the world, at every single
moment, there are computers unused, simply because
their user is not working at that time. These comput-
ers could be used to lower the load of the ones placed
at “’the antipodes”. These points are what drives re-
search into the domains associated with grid program-
ming (Foster and Kesselman, 1999) and peer-to-peer
systems, from SETI@QHOME (Seti) to Napster but
also to works like (Vercouter, 2002) on open systems
working without middleware agents.

To permit sharing of resources (not only between em-
ployees of a single group, but also between anony-
mous users), certain problems must be overcome.

To be efficient, a resource sharing application must
allow users to execute code on the shared comput-

350

Klein G., Suna A. and El Fallah-Seghrouchni A. (2004).

ers. It induces a clear problem: The code that will
be executed must be present on the shared computer;
it makes real sharing very difficult as it is difficult to
know a priori what application will be shared and so
these applications cannot be installed on every shared
computer beforehand.

The sharing system must be flexible as it must nei-
ther disturb the users nor be hindered if a computer is
turned off.

The system will not be used if it is needed of everyone
to reboot their distributed applications every time one
of the shared computers suffers a problem (an event
which can happen relatively often if the computers are
personal systems). It becomes all truer if the sharing
system is distributed on a large scale (e.g. Internet).
It must also be considered that as the system would
be then very wide, it would not be possible to make
the hypothesis that the communications are timeless,
so local information of a site concerning another site
will always be obsolete (even if only by few seconds).
In fact, trying to renew the local information often
might be so costly in terms of communications, that
the whole system would be diminished. So the load
sharing must be done based on obsolete information.
The system must also guaranty the safety of the users.
In fact, this kind of systems implies that foreign code
will run on the shared computers, which can be a risk
for every user.

Finally, for the sharing to be efficient, it is necessary
that the applications which are going to be distributed

RESOURCE SHARING AND LOAD BALANCING BASED ON AGENT MOBILITY.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 350-355

DOI: 10.5220/0002601303500355
Copyright © SciTePress



RESOURCE SHARING AND LOAD BALANCING BASED ON AGENT MOBILITY

on it will use it correctly.

It is not reasonable to believe that it might be pos-
sible to distribute very heavy applications efficiently
while all the distribution is managed by a ”super-OS”.
Highly distributed systems are different from shared-
memory multiprocessors computers because the com-
munications between the computers can be very ex-
pensive when compared to the internal communica-
tions of a computer. But the system itself has no way
to determine the cost of the communications, if the
application is not built specifically so that it includes
a description of its processes’ communications.

2 RELATED WORK

The resource sharing between different computers is
a goal of several distributed computing approaches,
from Grid-Computing to Cluster-computing or peer-
to-peer sharing systems. Our model has common ele-
ments with each one of these.

In many aspects, we follow the same basic principles
as the ones of the peer-to-peer systems of the last gen-
erations (Kazaa, Overnet (Bhagwan, et al., 2003) or
Chord (Stoica, et al., 2001)). Those systems follow
certain hypotheses that should be followed in the case
of all resource sharing systems:

- Since the problems of Napster, every one of these
systems must be fully distributed, so that no central
server could be attacked (physically or legally).

- They must be generic; every kind of file can be
shared using these systems. It was not the case for
Napster, which offered only MP3s sharing, but since
Gnutella, the sharing systems are not restrained by the
type of the shared files.

- They are anonymous. In fact, they are not anony-
mous, the requests are anonymous but the answers
are not (it is so to let two computers communicate
directly). However, the principle is very good, as
anonymity offers the greatest protection against spec-
ified attacks.

- The mass of communication is minimized. To re-
duce the communication load, several methods are ap-
plied, from “’super-nodes” architectures (e.g. Kazaa)
to indexing methods (e.g. Overnet).

However, there are evident differences; first, it is far
easier to share files than generic computer resources.
File sharing does not ask for neither load-balancing
system nor redundancy and other safety systems. It is
why, while in principle, sharing computer resources
within the characteristic hypotheses of the peer-to-
peer file sharing systems, we should also consider
the works in grid computing and cluster computing
as they both treat the problem of distribution compu-
tational load on several computers.

The research in the clusters domain encountered a
serious problem while treating the case of hetero-

geneous computers. Several system exist that ac-
cept heterogeneous computers, for example PVM
(Geist, et al., 1994), P4 (Dongarra, et al., 1993) or
LINDA (Carriero and Gelernter, 1989). One of the
most interesting solutions concerning cluster comput-
ing has been the introduction of distributed shared
memory like in LINDA. The functionalities of the
clustered systems have also been applied to larger
scale systems (e.g. using Globus (Foster and Kessel-
man)). However, distributing a shared application
(e.g. SETI@Home project (Seti)) is easier than shar-
ing computational power for applications unknown.
The only solution to really share resources is to use
mobile code, to have the processes migrate from a site
to another until they find a good one.

Most of the grid programming systems (Globus, Le-
gion (White), MPICH (MPICH-G2)) offer the func-
tionalities necessary to implement every kind of dis-
tributed application. However, these systems are
rather platform for building distributed application
than sharing platform. Most do not implement mo-
bility facilities and so cannot be used in the frame of
our hypotheses.

3 MOTIVATING OUR CHOICES

3.1 An architecture for mobility ...

Multiagent systems appeared as the most pertinent ba-
sis to build our sharing system as it helps to solve
many of the problems cited before. They offer a
great flexibility to the whole system and are naturally
adapted to distributed environments. Nevertheless,
as we showed in (Klein et al., 2002), in order to be
plainly able to profit from the diverse advantages of
distributed systems, they must be conceived so that
they take into account these distribution problems.
Using mobile agents gives us a solution to most of
the problems described before; indeed, mobile code
offers the lone alternative to the presence of a copy
of every single distributed program on every shared
computer and the agents are not only very adapted
to the distributed systems, but they also carry a very
high level of encapsulation of the code which can help
to improve the security of the system and a certain
autonomy of the processes distributed across the net-
work which can let the system be very adaptive to the
evolution of the situation.

3.2 ... and resource sharing

As we showed before, it would be interesting to be
able to share resources from different users’ comput-
ers even if they are distant. To be able to do that,

351



ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

we have to build a sharing “platform”. Three differ-
ent points must be taken into account: the security
and the managing of every single computer partici-
pating to the sharing network, the building of every
of the tasks distributed on the different computers and
finally, the state of the system as a whole.

As sites can be owned by different people and as the
users can have divergent goals and as the number of
shared sites is not limited, it is not realistic to be-
lieve that we can build a sharing system following a
real hierarchic architecture. There can be neither cen-
tralized management nor even domain-based manage-
ment. So we considered an agent-based architecture
composed of three types of agents.

The Task agents encapsulate the distributed processes
of the users. They verify if the site where they run is
satisfying enough, and if it is not, they look for a bet-
ter one following the pieces of information they pos-
sess and the information the Manager of the site can
give them. Then they migrate to a better site.

The Manager agents manage their sites and they are
not mobile. They guaranty that the local running
Tasks agents follow the rules, that the security and
the stability of their site are good enough and that the
local information about the system as a whole is not
too obsolete.

The Sniffer agents travel across the network, migrat-
ing between shared sites to find good sites for the ap-
plications of their owners. They also try to renew the
information of every site they go through by making
propositions of changes about the local knowledge to
the manager of the site. So they make the system as
a whole efficient as these pieces of information are
used by every Task agent. Finally, their contents can
be analyzed when they come back to their home site.

4 HOW CAN AGENTS CLASSIFY
THE SITES

One of the first problems we met while conceiving a
sharing system where agents choose their destinations
by themselves can be found in the fact that it is nec-
essary to give the agents a tool to make that choice.
So both a computable representation of the comput-
ers and a method of classification fast enough to not
consume too much resources (the agents must spend
as few resources as possible or the distribution will
not carry any gain).

4.1 How agents represent the sites

One of the first characteristics of our system of rep-
resentation is that it must let agents take into account
the temporality of the information. Indeed, in order to
not overload the communications, we must consider

352

that the knowledge of a site about another one will
not be refreshed very often (the Sniffers will refresh
them only if they can in their present state). It is also
necessary that this knowledge is simple enough to be
computed in a reasonable time, still complete enough
to offer good results.

We must separate the data about the sites in two cat-
egories, the dynamic and the static information. The
static data is characteristic to the computer (like its
microprocessor or OS) and it can evolve but very
rarely; on the other hand, the dynamic information
represent the temporal state of the computer at a pre-
cise time. The dynamic information will be the one
that should be refreshed from time to time.

4.1.1 Static Data

The static characteristics that we are taking into ac-
count in our application are: the computation power,
memory’s and disks’ characteristics, allowances of
the hosted Task agents, network connection character-
istics. For our tests, we obtained the first two points
with PerformanceTest edited by PassMark Software,
which gave us numerical marks for each one of these
points on PCs with Windows operating system (OS).
It is possible to obtain similar things with the system
tools when running Linux, but to simplify this paper
we will only consider Windows-based sites. The per-
missions are fixed by the user and represented in a
binary table, same as the connection nature. The av-
erage distance is a numerical measure (of time) and
the quality of the connection is a distribution curve.

4.1.2 Dynamic Data

The dynamic data are divers curves describing the
evolution of the system that are refreshed locally, like
the load of the processor, of the memory, the instant
distance to a reference site, and the instant quality of
the local connection. There are other kinds of data
that are not taken into account yet, like the specific
services accessible on this site.

For our simulation, we used a simplified version of
the description of the sites; it only includes the basic
characteristics of the computer.

4.2 Classifying the sites

To classify the computers is a necessity. Indeed, the
agents must not only represent the sites but also use
these representations to make decisions about where
to and when migrate. They must be able to select a
site and decide that the services of their present site
are not sufficient. So they must be able to compare
and classify the sites, satisfying the following rules:
classifying a computer must use little resources; the
classifying functions must be simple and light; the



RESOURCE SHARING AND LOAD BALANCING BASED ON AGENT MOBILITY

classification obtained must be systematic and there
must be no ambiguity.
To obtain all these characteristics, we choose Galois’s
lattices (Ore, 1944) to represent the preferences as
they can be applied even to abstract data (e.g. curves,
histograms, fuzzy sets) (Diday and Emilion, 2003).
The Galois lattices can be defined as follows: be two
lattices (£, >,U,N) and (F, >, U, N) where >, U and
N are respectively the order relationship, the supre-
mum and the infimum, a Galois correspondence is a
couple (f, g) so that:
f:FE — Fandg: F — E are decreasing mappings
h=fog:E— Fandk=gof:F — F are
both extensive (i.e. so that Vo € E, h(x) > x, resp.
Wy € F,k(y) > y).
In our situation, F is the description lattice (which can
be seen as a partial classification of the abstract sites
and that is presented in the figure 1) and E is the sets
lattice, sets that contains the real sites associated to
the descriptions. We combine these descriptions with
values representing our preferences.

The lattices are sets of sets of computers (with in-

cPusxa N RAM>30% &Y T
%CPU<30%

%CPU<30%

RAM>30%

CPU>X
%RAM>30% &
%CPU<30%

Figure 1: Galois Lattice

clude an order relationship), associated with their de-
scriptions. So, the user defines the preferences of his
agents through the use of the lattices of descriptions of
computers. We can guaranty that a machine can find
its unique place in the lattice after at most » compar-
isons (with n being the length of the longest branch
of the lattice). It will always be possible to classify
a new site and to compare it to older ones. Yet, we
must recall that a lattice is a partial order, so certain
computers will not be comparable. For this reason,
we also ask the user to give qualities to each of the
categories defined by the descriptions.

Inside a category, it will choose a computer from the
most restrictive node possible. This solution guar-
anties that the best solution will be selected, but it let
some flexibility to the whole; the agents will, for ex-
ample, be able to choose their destination by taking
into account the moves of their ”site mates” and go
to a second choice if everyone goes to the first one.
As the representation and the classifying tool are rel-

atively light, they will be easy to carry during the
migrations. Finally, this system is simple enough to
open the potentiality of creating new lattices for new
applications.

S THE TEST PLATFORM

5.1 CLAIM and SYMPA

For our implementation, we used the CLAIM Ilan-
guage and the SyMPA platform (El Fallah and Suna,
2003) because they provide every mechanism for the
design of intelligent, mobile agents, and for the visu-
alization of agents’ execution and migration.
CLAIM (Computational Language for Autonomous,
Intelligent and Mobile agents) is a declarative lan-
guage that combines elements from the agent oriented
programming languages for representing agents’ in-
telligence and communication with elements from
the concurrent languages (e.g. the ambient calcu-
lus (Cardelli and Gordon, 1998)) for representing
agents’ mobility. An agent in CLAIM is an au-
tonomous, intelligent and mobile entity that has a list
of local processes concurrently executed and a list of
sub-agents. In addition, an agent has mental com-
ponents such as knowledge, capabilities and goals,
that allow a forward (reactive behavior) or a back-
ward reasoning (goal driven behavior). An agent can
create new agents, can call methods implemented in
other programming languages (e.g. Java methods, in
this version of CLAIM), can communicate with other
agents (one can define using the language’s primitives
a unicast, a multicast or a broadcast communication)
and can migrate using the mobility primitives inspired
from the ambient calculus.

SyMPA (French: Systeme Multi-Plateforme

Agent System

Agent System

Central System

Figure 2: SyMPA’s Architecture

d’Agents) is a MASIF (Milojicic, et al., 1998) com-
pliant platform, implemented in Java (Java), consist-
ing in a set of connected computers, that supports
CLAIM agents and offers all the mechanisms needed
for the design and the secure execution of a distributed

353



ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

MAS. SyMPA’s architecture (figure 2) presents three
levels:

The Central System provides services for agents’
and agents systems’ management and localization.
An Agent System is deployed on each connected
computer at the SYMPA platform. It provides high
level mechanisms, such as a graphical interface for
defining CLAIM agents and classes, an interpret for
verifying the definitions’ syntax and interfaces for the
running agents, low level mechanisms, for agents’
deployment, communication, migration and manage-
ment, fault tolerance and security mechanisms.

An agent in SyMPA is a entity defined using CLAIM.
It is uniquely identified. Each agent has an interface
for visualizing the behavior, communication and mo-
bility and is concurrently executing the reactive and
pro-active behavior.

In order to assure the efficiency and the security of
the system, communication protocols were proposed,
doubled by cryptographic mechanisms and resources
access policies.

5.2 The classes of agents

Two very important characteristics of CLAIM are the
generality and the expressiveness. One can repre-
sent agents’ reasoning, communication and mobility.
A Web information research example (El Fallah and
Suna, 2003) and an electronic commerce example (El
Fallah and Suna, 2003) were already successfully pro-
grammed in CLAIM. So we choose CLAIM for our
load balancing application.

As we’ve seen in the application’s description, there
are three classes of agents.

The Manager agents are static agents situated on
each of the computers involved in the application.
They have a representation of the characteristics of
the other sites under the form of Galois lattices. They
have capabilities for creating Sniffers, for answer-
ing at the Sniffer and Task agents’ requests concern-
ing the other computers’ characteristics, for updating
their knowledge when a Sniffer gives them new infor-
mation. In plus, when a Manager observes the over-
charge of the local resources, it can demand the de-
parture of the local Task agents.

The Sniffer agents are created by the Managers and
they migrate to the other computers where they update
their knowledge about the local computer character-
istics, and the knowledge of the local Manager about
the other computers.

The Task agents are executing several tasks. In
order to do this, a Task agent migrates to the best
computer known in its Galois lattice, received from
the Manager, and starts to execute the task. When it
detects that the local resources aren’t sufficient any-
more, or when it receives a departure demand from
the local Manager, it migrates to the new best com-

354

puter and resumes its task. At the end, it returns to the
initial computer and terminates the execution.

5.3 The Practical Tests

It wasn’t possible to test our model in a real situa-
tion, on the internet, mainly because of the security
restrictions concerning the mobile agents. So we were
forced to perform the tests at a reduced scale. We
used a simplified version of our programs and we in-
stalled and deployed them on three different comput-
ers from the computational power point of view, con-
nected on a local network (of the LIP6, University of
Paris 6), with the following characteristics: a Pentium
III-1 GHz, with 1 GBytes RAM and Windows Server
2002 OS, a Pentium IV-2,6 GHz, 512 MBytes RAM,
Windows XP and a Pentium III 1,5 GHz, 256 MBytes
RAM, Windows XP.

The results aren’t entirely representative because they
were obtained in a simplified environment. Mean-
while, they give an approximation of the different
characteristics, if the system would have been imple-
mented in a real situation.

5.4 Results

The tests were performed in several steps. First, we
started four Task agents on each machine, in a static
manner (by forbidding the migration). The four Task
finish after 20 minutes on the slowest computer, com-
paring with 10 minutes on the two faster ones. Next,
we performed the same test, without started any task
on the second computer and allowing the migration.
In this way, 2/5 of the system total computational

Results Task agents

'm Computer 1, without migration
B Computer 1, with migration
& Computer 2, without migration
@ Computer 2, with migration

Task Agents

Figure 3: Experimental results

power wasn’t utilized. All the agents from the third
machine migrated to the first machine (the best one,
that was free at the last passage of the Sniffers) which
become overcharged, but some of the agents (that
overcharged the maximum number of agents for a op-
timal run) migrated to the second computer, that was
free. A centralized distribution of charge would have
avoided this useless migration from 3 to 1, but in our



RESOURCE SHARING AND LOAD BALANCING BASED ON AGENT MOBILITY

case we couldn’t hope for a better execution, because
the agents worked with obsolete data. This useless
migration took between 20 and 40 seconds for the
three involved agents. In spite of this, the earning of
time was important (see Figure 3).

We have to note that during the tests, all the agents
having the same preference description Galois lattice
migrate to the same destination. It is very probable
that the situation would be the same if they would
have lattices with little differences. This “rabble” mi-
gration is not very efficient and the destination com-
puter will be rapidly overcharged. It would be prefer-
able in the future to have a co-operation between the
agents in order not to migrate to the same site, because
this behaviour affect all the agents in the system. In
plus, we’ll consider in the future the introduction of
authorisation and reservation mechanisms that could
avoid the useless migrations of the agents.

6 CONCLUSION AND FUTURE
WORK

The performed tests cannot be considered complete
for several reasons. First, using SyMPA, the agents’
execution is necessarily slowed down in order to al-
low the users to follow the agents’ behavior, com-
munication and migration. Another limit of these
tests is their reduced scale and the fact that they don’t
take into account all the computers selection criteri-
ons from our list. It would be necessary to replace the
system in a real situation for a complete validation.
The system itself leaves some points in suspense. The
Galois lattices should be built entirely in a dynamic
and automatic manner. It would be also useful to have
standard lattices for some types of applications.
Nevertheless, the interest of this work consist in the
real experimentation of the agents’ distribution, that
allowed us to show the viability of the mobility for the
load balancing. The computers’ classification based
on the Galois lattices also seems pertinent. It allows
to reasonably choose a computer based on completely
dynamic descriptions. Finally, we could prove that
the platform efficiently manage the migration and the
communication.

There are a lot of things to do in the future concern-
ing this work. In the first phase, we would like to
implement our system in an environment closer to its
real destination, i.e. on several computers physically
distant. We should also propose a coordination mech-
anism between the Task agents in order to avoid the
mass migration to the same destination and a reserva-
tion mechanism for allowing a continuous utilization.
Using the properties of the Galois lattices, it should
be possible to a Task agent to clone a part of itself and
to give it the sub-lattice adapted to its needs. It should
be also possible to create new lattices in function of
the last experiences (maybe using genetic algorithms)
and to find a pertinent way to use the data gathered by
the Sniffers.

REFERENCES

Bhagwan R., Savage S., Voelke G. M. (2003). Overnet:
Understanding Availability. In Proceedings of the 2nd
International Workshop on P2P Systems.

Cardelli L., Gordon A. (1998). Mobile Ambients. In
Foundations of Software Science and Computational
Structures, Maurice Nivat (Ed.), LNCS, Vol. 1378,
Springer, pages 140-155.

Carriero N., Gelernter D. (1989). How to write parallel pro-
grams: a guide to the perplexed. In ACM Computing
Surveys, Vol. 21(3), pages 323-357.

Diday E., Emilion R. (2003). Maximal and Stochastic Ga-
lois Lattices. In Discrete Applied Mathematics, Vol.
127(2), pages 271-284.

Dongarra J., et al. (1993). Integrated PVM Framework Sup-
ports Heterogeneous Network Computing. In Com-
puters in physics, Vol. 7(2), pages 166-174.

El Fallah-Seghrouchni A., Suna A. (2003). An Unified
Framework for Programming Autonomous, Intelli-
gent and Mobile Agents. In the proceedings of
CEEMAS’03, LNAI Vol. 2691, pages 353-362.

El Fallah-Seghrouchni A., Suna A. (2003). CLAIM: A
Computational Language for Autonomous, Intelligent
and Mobile Agents. In Proceedings of ProMAS’03,
workshop of AAMAS, Melbourne, Astralia.

Foster I., Kesselman C. (1999). The Grid: Blueprint for a
Future Computing Infrastructure. Morgan, Kaufmann.

Foster I., Kesselman C. The Globus Project: a statuts report,
on-line at: http://www.globus.org

Geist A., et al. (1994). PVM: Parallel Virtual Machine: A
Users Guide and Tutorial for Network Parallel Com-
puting. In MIT Press.

Java on-line at http://java.sun.com

Klein G., El Fallah-Seghrouchni A., Taillibert P. (2002).
HAMAC: An Agent Based Programming Method. In
Proceedings of AAMAS’02, pages 47-48.

MPICH-G2: A Globus-enabled MPI, on-line at:
http://www3.niu.edu/mpi/

Milojicic D., et al. (1998). MASIF, The OMG Mobile Agent
System Interoperability Facility. In Proceedings of
Mobile Agents, LNAI, Vol. 1477, pages 50-67.

Ore O. (1944). Galois Connections. In Trans. Amer. Math.
Soc., Vol. 55, pages 494-513.

Seti on-line at http://www.setiathome.ssl.berkeley.edu/index.html

Stoica 1., et al. (2001). Chord: A Scalable Peer-To-Peer
Lookup Service for Internet Applications. In Proceed-
ings of the ACM SIGCOMM ’01, pages 149-160.

Vercouter L. (2002). A fault-tolerant open MAS. In Pro-
ceedings of AAMAS 2002, ACM, pages 670-671

White B. S., et al. LegionFS: A Secure and Scalable File
System Supporting Cross-Domain High-Performance
Applications. On-line at: http://legion.virginia.edu/

355



