
SEMANTIC E-LEARNING AGENTS
Supporting E-Learning By Semantic Web and Agents Technologies

Jürgen Dunkel, Ralf Bruns
Department of Computer Science, University of Applied Sciences and Arts Hannover,

Ricklinger Stadtweg 120, D-30459 Hannover, Germany

Sascha Ossowski
AI Group, E.S.C.E.T.,Universidad Rey Juan Carlos Madrid,

Campus de Mostoles, Calle Tulipan s/n, E-28933 Madrid, Spain

Keywords: Semantic Web, Ontology, Software Agents, E-learning

Abstract: E-learning is starting to play a major role in the learning and teaching activities at institutions of higher
education worldwide. The students perform significant parts of their study activities decentralized and
access the necessary information sources via the Internet. Several tools have been developed
providing basic infrastructures that enable individual and collaborative work in a location-independent and
time-independent fashion. Still, systems that adequately provide personalized and permanent support for
using these tools are still to come.
This paper reports on the advances of the Semantic E-learning Agent (SEA) project, whose objective is to
develop virtual student advisors, that render support to university students in order to successfully organize
und perform their studies. The E-learning agents are developed with novel concepts of the Semantic Web
and agents technology. The key concept is the semantic modeling of the E-learning domain by means of
XML-based applied ontology languages such as DAML+OIL and OWL. Software agents apply ontological
and domain knowledge in order to assist human users in their decision making processes. For this task, the
inference engine JESS is applied in conjunction with the agent framework JADE.

1 INTRODUCTION

E-learning has established itself as a significant part
of learning and teaching at institutions of higher
education worldwide. The students perform
significant parts of their study activities
decentralized and access the necessary information
sources via the Internet. The emerged individual
means of work are location-independent and time-
independent, consequently requiring a permanent
available and direct support that can only be
provided by a software system.
The main focus of current E-learning systems is to
provide an appropriate technical infrastructure for
the information exchange between all user groups
involved in the E-learning process. A recent
comparison of modern E-learning environments

(CCTT, 2002) revealed, that intelligent advisory
agents are not applied so far in E-learning systems.
However, the necessity of an intelligent support is
unquestioned due to the individual and decentralized
means of study (Cuena et al., 1999, Ossowski et al.
2002).

The objective of the semantic E-learning agent
project is to develop virtual student advisors, that
render support to university students, assisting them
to successfully organize und perform their studies.
These advisors are to behave both reactive and
proactive: setting out from a knowledge base
consisting of E-learning and user ontologies, their
recommendations must be tailored to the personal
needs of a particular student. For example, they
should be able to answer questions regarding the
regulations of study (e.g.: does a student possess all
requirements to participate in an examination or a
course?, is a student allowed to register for his/her

271
Dunkel J., Bruns R. and Ossowski S. (2004).
SEMANTIC E-LEARNING AGENTS - Supporting E-Learning By Semantic Web and Agents Technologies.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 271-278
DOI: 10.5220/0002613602710278
Copyright c© SciTePress

thesis?, etc). In addition, advisors should be capable
of announcing new opportunities for students that
are looking for suitable practical training jobs or
thesis subjects.

To achieve these goals, we propose a software
architecture (Dunkel et al., 2003) where virtual
student advisors are developed with novel concepts
from Semantic Web (Berners-Lee et al., 2001) and
Intelligent Agent (Wooldbridge et al. 1995)
technology. The basic idea is to model the structure
of our E-learning domain by means of ontologies,
and to represent it by means of XML-based applied
ontology languages such as DAML+OIL and OWL.
Due to the standardization of these technologies,
knowledge models can easily be shared und reused
via the Internet. Software agents apply the
knowledge represented in the ontologies during their
intelligent decision making process. Again, the use
of widespread inference engines, such as JESS
(Friedman-Hill, 2000a), and of agent frameworks
that comply with the FIPA standard (FIPA, 2003) as
JADE (Bellifemine et al., 2002), which facilitates
maintenance and fosters interoperability with our
system. We claim that this is quite a promising
approach because − although first concrete practical
application scenarios with Semantic Web
technologies have been published, e.g. (Horrocks et
al. 2002) − E-learning systems that successfully
combine these techniques in order to render support
to users are still to come.

This paper reports on the lessons learnt from the
construction of a real-world application in the E-
learning domain that draws upon an effective
integration of both, Semantic Web and Intelligent
Agent technology. It is organized as follows: In the
next section the employed knowledge representation
techniques and the developed knowledge models are
presented in detail. The third section shows how
automated inference can be carried out on base of
the knowledge models, and how agents can provide
reasoning capabilities using this ontology. In the
following section the software architecture of the
agent system is outlined. Finally, the last section
summarizes the most significant features of the
project and provides a brief outlook to the direction
of future research.

2 ONTOLOGIES

The key concept of a semantic advisory system for
university students is the semantic modeling of the
E-learning domain knowledge (e.g. university
regulations, course descriptions, admission
regulations) as well as an individual user model,
which reflects the current situation of study (e.g.

passed exams, current courses). In these models the
fundamental structures of the available domain
knowledge as well as the basic facts (e.g. offered
courses) are defined.

In our system, the structural part of this E-
learning knowledge is modeled by means of
ontologies which formally define domain entities
and the relations among them. For this purpose, we
use Semantic Web technology based on XML and
RDF/ RDF Schema (WWW-RDF, 2003),
respectively. Software agents use this information as
the basis for their reasoning and, due to the
standardization of these technologies, they are able
to access distributed information sources from
different universities. Thus the developed ontologies
can serve as standardized and open interfaces for the
interoperability of E-learning systems.

The ontology language DAML+OIL is an attempt
to address the shortcomings of the RDF/ RDF
Schema specification by incorporating additional
features (DAML, 2003). DAML+OIL includes
support for classification, property restriction and
facilities for type definitions. In the last years,
ontology languages have converged to the new W3C
standard OWL (Web Ontology Language) (WWW-
OWL, 2003), which is currently under development.
In a first step, we have chosen the DAML+OIL
language to model the E-learning knowledge. The
main reason was the availability of different tools
for the development of the knowledge base. As soon
as possible, the knowledge base will be migrated to
the new W3C standard language OWL.

Two different ontologies have been developed for
our E-learning agents: on the one hand, an ontology
describing the organization structure of a university
department, on the other hand, an ontology holding
the knowledge about a specific user of the system.

2.1 Department Ontology

The department ontology models the essential parts
of the organizational structure of a university. The
emphasis lies on the individual departments, the
different roles of persons in a department and the
courses.

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

272

Figure 1: Department Ontology – person branch

It is modeled as follows. Every organizational unit is
defined as a subclass of organization. For this super
class a transitive property is defined, thus a
hierarchy of instances can easily be modeled. In
DAML this transitivity is modeled as follows:

<daml:TransitiveProperty
 rdf:ID="subOrg">
 <rdfs:label>subOrg of</rdfs:label>
 <rdfs:domain
 rdf:resource="#Organization"/>
 <rdfs:range
 rdf:resource="#Organization"/>
</daml:TransitiveProperty>

The transitivity is used in the instance files to model
a concrete hierarchy. For example, a student project
is a sub-organization of a department and the
computer science department is a sub-organization
of the university FH Hannover.

<fbi:department rdf:ID="CS">
 <fbi:subOrg>
 <fbi:FH rdf:about="#FHHannover"/>
 </fbi:subOrg>
</fbi:department>
<fbi:project rdf:ID="Project1">
 <fbi:subOrg>
 <fbi:department
 rdf:about="#CS"/>
 </fbi:subOrg>
</fbi:project>

All further parts of the ontology belong to an
organization. This is modeled by the property
<daml:ObjectProperty
rdf:ID=”isPartOf”/>, which is restricted to a
concrete subclass of organization.

The part of the ontology that models a person is
shown in figure 1. The semantic of inheritance in
this taxonomy is slightly different compared to
object-oriented programming. In object-oriented
programming it expresses a specialization of an “is-
a”-relation, while in the context of ontologies, it
serves mainly as a categorization of knowledge.

For the sake of clarity, the graphical
representation does not show all information of the
relations. In particular, is not shown which class or
property of another branch of the ontology is
referred to. One example is the property
offersCourse of the class Lecturer. In the XML
notation it is defined as follows:

<daml:ObjectProperty
 rdf:ID="offersCourse">
 <rdfs:label> offers course
 </rdfs:label>
 <rdfs:domain
 rdf:resource="#Lecturer"/>
 <rdfs:range
 rdf:resource="#Course"/>
 <daml:minCardinality>1
 </daml:minCardinality>
</daml:ObjectProperty>

A lecturer teaches one or more courses and it is
possible to navigate from a lecturer to a specific

Person

Student Employ

Lecturer Research
Assist.

Stud.Asssist

Techical
Assist.

ExtLect Profs

Stud-ID
Pers-No

Office
Semester

passedExam
offersCourse

isAuthorOf

Name

Literal

ObjektProperty

Class

ObjectProperty

subClassOf

Legend

SEMANTIC E-LEARNING AGENTS - SUPPORTING ELEARNING BY SEMANTIC WEB AND AGENTs
TECHNOLOGIES

273

Figure 2: Department Ontology – course branch

Course

ExerciseLecture

hasDate

hasRoom

Exam

hasLecturer

Participants

has Document

name

course. In the course branch of the ontology one can
find a property hasLecturer with a similar
semantics with inverse direction of navigation. This
can be defined as an inverse property in DAML.

<daml:ObjectProperty
 rdf:ID="hasLecturer">
 <daml:label>is offered by
 </daml:label>
 <daml:inverseOf
rdf:resource="#offersCourse"/>
</daml:ObjectProperty>

Figure 2 displays the course branch of the E-learning
ontology. Not visualized by the graphical notation
are further characteristics of subclasses. For example
a course is a disjunctive union of its subclasses. In
DAML this is modeled as follows.

<daml:Class
 rdf:about="#Course">
 <daml:disjointUnionOf rdf:parseType=
 "http://www.daml.org/2001/
 03/daml+oil#collection">
 <daml:Class rdf:about="#Lecture"/>
 <daml:Class rdf:about="#Exercise"/>
 <daml:Class rdf:about="#Exam"/>
 </daml:disjointUnionOf>
</daml:Class>

This construct ensures that a course is either a
lecture, an exercise or an examination.

2.2 User Ontology

The user ontology serves as the knowledge model of
a specific user, e.g. a student or a faculty member.
The core class of the ontology is User. A user is a

person with respect to the department ontology. This
is modeled by the object property sameClassAs,
which is the DAML element to model inter-
ontological equivalence.

<daml:Class rdf:about=“#User“>
 <daml:sameClassAs rdf:resource=
 "http://localhost:8080/Agents/
 FB_Onto.daml#Person"/>
</daml:Class>

The additional properties model all relevant data of a
person, e.g. login name, student ID, current
semester, passed/failed courses, last login date, skills
etc.

3 AGENTS AND INFERENCE

The semantic E-learning agents should act like a
human advisor according to the knowledge modeled
in the ontology. This is achieved by using a rule-
based inference engine to carry out the automated
inferences entailed by the semantics of DAML.

3.1 Inference

To provide the semantic E-learning agents with
reasoning capabilities, the rule-based Expert System
Shell JESS (Java Expert System Shell) (Friedmann-
Hill, 2000] is employed. JESS was initially
developed as a Java version of CLIPS (C Language
Integrated Productions System) and provides a
convenient way to integrate reasoning capabilities
into Java programs. With the JESS language
complex rules, facts and queries can be specified.

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

274

3.2 Ontology Reasoning

To make use of the knowledge modeled in the
ontology, the DAML semantics must be mapped
into facts and rules of a production system, like
JESS.

Because JESS does not provide any interface to
import a DAML ontology in its knowledge base, we
choose DAMLJessKB (Kopena et al., 2003), a
reasoning tool for DAML that uses JESS as
inference engine. In some more detail
DAMLJessKB processes the following steps.

First DAMLJessKB loads and parses RDF docu-
ments using the RDF-Parser ARP of the Jena toolkit
(Hewlett Packard Labs, 2003). ARP generates RDF
triples. DAMLJessKB reorders the triples from
subject-predicate-object form into predicate-subject-
object form. Each RDF triple represents an
unordered fact in JESS.

To assert triples in JESS minor transformations
are necessary. DAMLJessKB translates URIs
(Uniform Resource Identifiers) into JESS symbols
by removing invalid characters (e.g. ~), and inserts
the dummy predicate PropertyValue in front of
each triple. The following example shows a
generated fact for JESS, which means, that
Professor is a subclass of Lecturer.

(PropertyValue
 http://www.w3.org/2000/01/rdf-
 schema#subClassOf
 file:///C:/FB_Onto.daml#Professor
 file:///C:/FB_Onto.daml#Lecturer)

Because in our DAML ontology Lecturer is
defined as a subclass of Person, it follows that
Professor is also a subclass of Person.

To support reasoning, DAMLJessKB includes
some built-in rules of the DAML semantics, which
are asserted into JESS, e.g. that an instance of a
subclass is also an instance of the super class:

(defrule subclassInstances
 (PropertyValue daml:subClassOf
 ?child ?parent)
 (PropertyValue rdf:type
 ?instance ?child)
 =>
 (assert
 (PropertyValue rdf:type
 ?instance ?parent)
)
)

The semantics of a JESS rule is similar to an if-then-
statement in a programming language. Whenever the
if part (the left-hand-side) which consists of several
patterns is satisfied, the rule is executed, i.e. in our
example a new fact is asserted into JESS. Details
about the JESS language can be found in (Friedman-
Hill, 2000).

Beside the DAML rules, which are directly
supplied by DAMLJessKB, it is necessary to
develop own domain-specific rules to model the
complete expert knowledge. These rules make it
possible to cope with complex queries related to a
domain.

First, all facts are produced; then, the DAML
rules are added; and finally the domain-specific rules
are asserted into JESS. The reasoning process is
performed by JESS applying all rules to deduce new
facts which are successively added to the knowledge
base.

DAMLJessKB can be considered as an interface
to JESS, which is capable of translating DAML
documents in accordance with their formal
semantics. We are aware of several other tools with
similar functionality, for example DAML API
(DAML API, 2003), or the SWI Prolog distribution
(SWI-Prolog 2003), which includes a package to
parse RDF and assert as Prolog facts, but none of
them fully meet the integration requirements of our
E-learning system

3.3 Agent access to the knowledge
base

In order to cope with their specific tasks, semantic
E-learning agents can pose queries to access the
JESS knowledge base. These queries are special
rules with no right-hand sides. The results of a query
are those facts, which satisfy all patterns. For
example, if a personal agent for a lecturer tom is
interested in all courses he has to give, it can use the
query:

 (defquery getCourses
 "find IDs of all my courses"
 (declare (variables ?lecturerID)
 (PropertyValue lecture:givesCourse
 ?lectureID ?course)
)

where lecturerID is the identifier of the lecturer,
which serves as parameter of the query, and
?course is an internal variable. All elements in a

SEMANTIC E-LEARNING AGENTS - SUPPORTING ELEARNING BY SEMANTIC WEB AND AGENTs
TECHNOLOGIES

275

query must be fully qualified with their namespace,
as they are used in the knowledge base. Executing
the query yields all facts that satisfy all patterns
specified in the query. E.g. a fact that fits the query
could be:

(PropertyValue
 file://C:/FB_User.daml#givesCourse
 file://C:/FB_User.daml#tom
 file://C:/FB_Onto.daml#Math1)

In this case the lecturer tom gives the Math1 course.
The following example shows a more complex
query that yields all documents of a course that are
more recent than a certain time. It has two
parameters: the time mydate and the identifier of a
course, e.g. file://C:/FB_Onto.daml#Math1.

(defquery getNewerDocs
 (declare (variables ?mydate ?course))
 (PropertyValue rdf:type
 ?course fb:course)
 (PropertyValue fb:hasDocument
 ?course ?doc)
 (PropertyValue fb:changeDate
 ?doc ?doc_modified)
 (PropertyValue date:longDate
 ?doc_modified? long_date)
 (PropertyValue rdf:value
 ?long_date
 ?doc_date&:(>= ?doc_date ?mydate))
)

The last pattern contains the condition that the last
time the document was modified is greater than
mydate.

4 JADE-AGENTS

In the previous sections we have modeled the
knowledge of the E-learning system in two different
ontologies: the department and the user ontology.
The two knowledge bases are related to different
domain concepts: to a department advisor and to a
specific user. A human advisor and a human user
communicate and exchange information to find a
solution for an individual problem.

To implement a software system reflecting this
situation we chose agent technology. Software
agents provide a direct way to implement
conversations or negotiations. The FIPA
(Foundation of Intelligent Physical Agents)

organization (FIPA, 2003) has defined several
standards for agent communication, e.g. ACL
(Agent Communication Language). Agent
technology provides natural means of
communication and information exchange, which is
on a high abstraction level and independent of
certain technologies, e.g. protocols or inter-process
communication mechanisms.

The semantic E-learning agents are developed
with JADE (Java Agent Development Framework)
(Bellifemine et al., 2002), which complies with the
FIPA standards. JADE is completely written in Java
and includes two main components: a FIPA-
compliant agent platform and a framework to
develop Java agents.

4.1 Agent structure

Figure 3 outlines the structure of the E-Learning
system with two different types of agents: a user and
a department agent.

User Agent
The user agent is implemented in a class
UserAgent and contains the user ontology with all
relevant information about personal data, courses,
skills, etc. When the user agent is started, it reads in
the user ontology with its personal data using
DAMLJessKB. Then the user agent-specific rules
and queries are loaded and asserted in JESS.

void setUP(){
 damljesskb = new DAMLJessKB();
 damljesskb.loadDAMLResource(
 userOntology);
 ...
 loadRules(userRules);
 ...

Corresponding to each JESS query the agent
includes a dedicated method like getCourses(),
which execute the query via DAMLJessKB, and
receives an iterator object containing the query
result.

String[] getCourses(){
 ...
 Iterator e = damljesskb.query (
 "getCourses", new String[] {""});

Department Agent
The department agent has all knowledge about the
department, e.g. the curriculum and the examination
regulations, which are modeled in its own DAML

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

276

ontology. The corresponding class Department-
Agent has a similar structure as UserAgent: In its
setup()-Method DAMLJessKB is used to load the
department ontology, specific rules and the
necessary Jess queries. Each query can be executed
in a corresponding agent method. One example is
getNewerDocs(), which yields all documents
related to a course which are newer than a specified
date.

4.2 Agent Behavior and
Communication

An agent must be able to execute several parallel
tasks in response to different external events. In
JADE all agent tasks are modeled as objects of the
Behavior subclass, which determine the reactions
of an agent: e.g. when it receives a message, and
how it reacts on requests from another agent.

The JADE-method addBehavior() adds a
behavior to the task queue of a specific agent.
Behaviors a registered in an agent’s setup()-
method or on response to an user event.

In a round-robin policy a scheduler executes the
action()-method of each behavior in the task
queue. If the action()-method is finished, the
done()-method is invoked. If it returns true, the
task is removed from the event queue. To model
cyclic tasks done() returns always false. Details
about behaviors can be found in (Bellifemine et al.,
2002).
 For example, the following behaviors are
defined in the E-learning system.

The user and the department agent use the
RegisterAtDF behavior, which registers an agent
with its name and type at the agent platform.

The user agent uses the UA_SearchDepartment-
Agent-behavior to ask the name service of the
platform, the Directory Facilitator (DF) for all
department agents, and to establish a connection to
them.

The UA_SendRequest-behavior requests
information from the department agent. This
behavior object is created by an event on the agent
GUI. According to a parameter content (e.g.
SEND_DOCUMENTS) the user agent collects the
necessary request parameters, e.g. the courses of a
user, and sends them via an ACL message to the
department agent. Furthermore a command string
(here: DOCUMENTS) is set to specify the request.

void action() {
 ...
 if(content== SEND_DOCUMENTS){
 ...
 parameters.setCourses(
 this.getCourses());
 ...

msg.setContentObject(parameters)
;
 msg.setLanguage(DOCUMENTS);
 ...
 }
 msg.addReceiver(agent);
 myAgent.send(msg);

The UA_ReceiveRequests-behavior waits in
an infinite loop for messages from a department
agent. If a message arrives it is analyzed and the
results are sent to the agent’s GUI.

The department agent uses the DA_SearchUser-
Agent-behavior to get all user agents, and to
establish a connection to them.

The DA_ReceiveRequest-behavior analyzes
arriving messages from user agents. It extracts the
command string and the parameters of the message,
to execute the specified query. Then the query
results are packed into a message and returned to the
corresponding user agent.

User
Agent

Department
Agent

Request/Query-If

Inform/Inform-done

user ontology rulesss depart. ontology ruless queries queries

behaviors behaviors

Figure 3: Agent structure

SEMANTIC E-LEARNING AGENTS - SUPPORTING ELEARNING BY SEMANTIC WEB AND AGENTs
TECHNOLOGIES

277

5 CONCLUSION

In this paper, we have described the use of Semantic
Web languages and agent technology for building an
intelligent advisory system for E-learning
environments. Our goal is to create and deploy
semantic E-learning agents capable of supporting
university students in successfully organizing and
performing their studies. In the project we have
developed a software architecture, which integrates
Semantic Web and Intelligent Agent technologies.

Due to the use of Semantic Web languages the
developed knowledge models can easily be used in
distributed systems and shared among software
agents via the Internet.

The major difficulty encountered was the
integration of the different concepts – on the one
hand the knowledge base written in RDF and
DAML+OIL, on the other hand the inference engine
JESS and the agent environment JADE. Further
problems emerged from the unsatisfactory tool
support for developing the ontology and the concrete
instances of the ontology. However, after the
mentioned problems were solved we could
implement a prototype system, where the agents
were able to reason upon the knowledge base in the
desired manner. Actually the migration of our
system to the upcoming W3C standard language
OWL is under work.

REFERENCES

Berners-Lee, T., Hendler, J., Lassila, O., 2001. The
Semantic Web. Scientific American.

Bellifemine, F, Giovanni, C., Trucco, T., Rimassa, G.,
2002, JADE Programmers’s Guide, http://sharon.cs-
elt.it/projects/jade/, retrieved October, 2003.

Dunkel, J. Holitschke, A., Software Architecture (In
German), 2003. Springer Verlag.

Bruns, R., Dunkel, J., von Helden, J., 2003. Secure Smart
Card-Based Access To An eLearning Portal. In
ICEIS’03, 5th International Conference on Enterprise
Information Systems. ICEIS Press.

CCTT - Center for Curriculum, Transfer and Technology,
2002.http://www.edutools.info/course/compare/all.jsp,
retrieved October, 2003.

Cuena J., Ossowski S., 1999. Distributed Models for
Decision Support. In: Weiß (ed.): Multi-Agent
Systems — A Modern Approach to DAI. MIT Press,
459–504.

DAML-The DARPA Agent Markup Language Home-
page: http://www.daml.org, retrieved October 10,
2003.

DAML API, 2003. http://codip.grci.com/Tools/Compo-
nents.html, retrieved October, 2003.

Friedman-Hill, E., 2000a. JESS, The rule engine for the
Java platform,. http://herzberg.ca.sandia.gov/jess/
retrieved October, 2003.

Friedman-Hill, E., 2000b, Jess. The Rete Algorithm,
Sandia National Laboratories,
http://herzberg.ca.sandia.gov/jess/docs/52/rete.html,
retrieved October, 2003.

FIPA - Foundation of Intelligent Physical Agents, 2003.
www.fipa.org, retrieved October, 2003.

Horrocks, I., Hendler, J. (eds.), 2002. The Semantic Web,
First International Semantic Web Conference,
Sardinia, Italy, Springer LNCS 2342.

Hewlett Packard Labs: Jena Semantic Web Toolkit, 2003.
http://www.hpl.hp.vom/semweb, retrieved October,
2003.

Kopena, J. Regli, W., 2003, DAMLJessKB: A Tool for
reasoning with the Semantic Web. IEEE Intelligent
Systems, 18(3).

Ossowski, S., Hernández, J., Iglesias, C.A.; Fernández, A.,
2002. Engineering Agent Systems for Decision
Support. In: Engineering Societies in an Agent World
III (Petta, Tolksdorf & Zambonelli, eds.), Springer-
Verlag.

Ossowski, S., Omicini, A., 2002. Coordination Knowledge
Engineering. Knowledge Engineering Review 17(4),
Cambridge University Press.

SWI-Prolog, 2003. http://www.swi-prolog.org, retrieved
October, 2003.

WWW – The World Wide Web Consortium, 2003a. RDF
Primer – W3C Working Draft 05 September 2003:
http://www.w3.org/TR/2002/WD-rdf-primer-
20020319/, retrieved October 10, 2003.

WWW – The World Wide Web Consortium, 2003b. OWL
(Web Ontology Language): http://www.w3.org/TR/-
owl-ref/ , retrieved October 10, 2003.

Wooldridge, M.; Jennings, N., 1995. Intelligent Agents -
Theory and Practice. Knowledge Engineering Review
10 (2), pp. 115–152.

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

278

