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Abstract: As the world-wide-web grows rapidly and a user's browsing experiences are needed to be personalized, the 
problem of predicting a user's behavior on a web-site has become important. In this paper, we present a 
probability model to utilize path profiles of users from web logs to predict the user's future requests. Each of 
the user's next probable requests is given a conditional probability value, which is calculated according to 
the function presented by us. Our model can give several predictions ranked by the values of their 
probability instead of giving one, thus increasing recommending ability. Based on a compact tree structure, 
our algorithm is efficient. Our result can potentially be applied to a wide range of applications on the web, 
including pre-sending, pre-fetching, enhancement of recommendation systems as well as web caching 
policies. The experiments show that our model has a good performance. 

1 INTRODUCTION 

Data mining is a process of discovering implicit and 
useful knowledge from large datasets [Fayyad, et al, 
1996]. It is first motivated by the decision support 
problem faced by many large retail organizations. 
Now with the development of information 
technology revolution, we have witnessed an 
explosive growth in the information available on the 
World Wide Web (WWW).  

Web mining is the application of data mining 
technology to huge Web data repositories. Basically, 
there are two domains that pertain to Web mining: 
the content mining and Web usage mining. The 
former is the process of extracting knowledge from 
the content of Web sites, and the latter, also known 
as Web log mining, is the process of extracting 
interesting patterns in Web access logs. The purpose 
of this paper is to explore ways to exploit the 
information from web logs for predicting users’ 
actions on the web. 

There has been an increasing amount of work on 
prediction models on the web. In the past, web-log 
based inference has been focused on prediction 
models that make best guesses on the users next 
actions based on their previous ones. Almost all of 
them only give one best guess when given a 
sequence of previous requests. In this paper, we 
present a probability model to predict the user’s next 
request. From a sequence of previous requests, 

instead of giving only one prediction, we can give 
several predictions ranked by the values of their 
probability. We present a function to calculate the 
values of their conditional probability and present an 
efficient algorithm to implement it. Our algorithm is 
based on the compact web access pattern tree 
(WAP-tree) (J.Pei, 2000) structure.  

We discuss related work in section 1.1 and 
discuss preprocessing task in section 2. We describe 
construction of WAP-tree (J.Pei, 2000) structure in 
section 3, and introduce our probability model and 
describe the algorithm of prediction in section 4. In 
section 5, we evaluate our experiments and provide a 
summary of this work.  

1.1 Related Work  

WebWatcher(T. Joachirms, 1997), acts like a web 
tour guide assistant, it guides the user along an 
appropriate path through the collection based on the 
past experiences of the visitor. It accompanies users 
from page to page, suggests appropriate hyperlinks 
and learns from experience to improve its advice 
giving skills.  

Syskill & Webert (M. Pazzani, 1996) is designed 
to help users distinguish  interesting  web  pages  on  
a   particular topic from uninteresting ones. 

WebTool, an integrated system (F. Masseglia, 
1999), is developed for mining either association 
rules or sequential patterns on web usage mining to 
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provide an efficient navigation to the visitor. When 
the navigation matches a rule, the hypertext 
organization of the document requested is 
dynamically modified. 

WhatNext (Z. Su, 2000) is focused on path-
based prediction model inspired by n-gram 
prediction models commonly used in speech 
processing communities. The algorithm build is n-
gram prediction model based on the occurrence 
frequency. Each sub-string of length n is an n-gram. 
The algorithm scans through all sub-strings exactly 
once, recording occurrence frequencies of the next 
click immediately after the sub-string in all sessions. 
The maximum occurred request is used as the 
prediction for the sub-string. 

In (R. R. Sarukkai, 2000), the authors proposed 
to use Markov chains to dynamically model the 
URL access patterns that are observed in navigation 
logs based on the previous state. In (Xing Dongshan, 
2002), a new a new Markov model is presented. 

Another prediction system proposed in (J. 
Pitkow, 1999) is based on the assumption of mining 
longest repeating subsequences to predict surfing. In 
(Xin Chen, 2003), the authors use a popularity-based 
prediction model for web pre-fetching. 

2 PREPROCESSING 

There are three main tasks for performing Web 
Usage Mining or Web usage Analysis: 
Preprocessing, Pattern Discovery, Pattern Analysis 
(J.Srivasta, 2000). As Preprocessing is the first step 
for our task and it is very important, we discuss it in 
this session. 

Preprocessing consist of converting the usage, 
content, and structure information into the data 
abstractions necessary for pattern discovery. 
Typically, only the portion of each user session that 
is accessing a specific site can be used for analysis, 
since the access information is not publicly available 
from the vast majority of Web servers. There are 
two ways (KhuResearch) to identify server sessions: 

(1)    IP address associated with a time range:   
We assume that from this period of the time, all 

accesses from a specific machine (unique IP 
address) belong to a specific user.  

(2)   Cookie associated with a time range:   
After reconfigure the server, whenever a new 

visitor comes in, he/she will be set with a cookie. 
When he/she revisits the server, we could identify 
him/her by the cookie.  

A thirty minute timeout is often used as the 
default method of breaking a user’s click-stream into 
sessions. Clearing the useless information in the 
Web logs is needed.  

After preprocessing is applied to the original 
Web log files, pieces of Web logs can be obtained. 
Each piece of Web log is a sequence of events from 
one user or session in timestamp ascending order, 
i.e. the events happened early goes before the events 
happened late. We use a single letter or a single 
letter with a number subscript to denote one event, 
and a sequence of event can be denoted as a 
sequence of letters or letters with number subscripts. 
For example, let E be a set of events. A Web log 
piece or (Web) access sequence 

neeeS L21=  

)( Eei ∈ for )1( ni ≤≤ is a sequence of events, 
while n is called the length of the access sequence. 
Because one can access the same web page more 
than one time during a single access to the web site, 
it is not necessary that 

ji ee ≠  for )( ji ≠ in an 
access sequence S.  

3 CONSTRUCT THE WAP-TREE 

As our algorithm is based on the compact web 
access pattern tree (WAP-tree) (J.Pei, 2000) 
structure, in this section, we introduce how to 
construct a WAP-Tree, which is previously 
presented by J.Pei et al. Due to different purpose, 
our WAP-Tree has some difference. In order not to 
lose information, we do not do any truncation to 
WAP-Tree during construction. 

The compactness of the WAP-Tree comes from 
the fact that if two access sequences share a common 
prefix P, the prefix P can be shared in the WAP-
Tree. 

The WAP-Tree can be defined as follows (J.Pei, 
2000). The only difference from (J.Pei, 2000) is that 
we use the complete sequences. 

1. Each node in a WAP-Tree registers two pieces 
of information: label and count, denoted as label: 
count. The root of the tree is a special virtual node 
with an empty label and count 0. Every other node is 
labeled by an event in the event set E, and is 
associated with a count which registers the number 
of occurrences of the corresponding prefix ended 
with that event in the Web access sequence database. 

2. The WAP-Tree is constructed as follows: for 
each access sequence in the database, insert them 
into WAP-Tree. The insertion of sequences is started 
from the root of WAP-Tree. Considering the first 
event, denoted as e, increment the count of child 
node with label e by 1 if there exist one; otherwise 
create a child labeled by e and set the count to 1. 
Then, recursively insert the rest of the sequence to 
the sub tree rooted at that child labeled e. 

3. Auxiliary node linkage structures are 
constructed to assist node traversal in a WAP-Tree 
as follows. All the nodes in the tree with the same 
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label are linked by shared-label linkages into a 
queue, called event-node queue. The event-node 
queue with label ie  is also called ei-queue. There is 
one header table H for a WAP-Tree, and the head of 
each event-node queue is registered in H. 

The specific process of the algorithm of 
construction of WAP-Tree can be referred in (J.Pei, 
2000). We can also build our WAP-tree from 
frequent sequences which are mined from original 
sequences with minimum support. This method will 
reduce applicability (applicability is defined in 
session 5), but it will also increase precision and 
reduce the time consumed in the predicting process. 
We will discuss this in session 5. 

4 PREDICT FUTURE REQUESTS 

Using the previous requests to predict the next can 
be treated as a problem to find the maximum 
conditional probability. Let E be the set of web 
pages, and 121 −neee L  be the previous requests. 
Our target is to find me which satisfy the following 
equation: 

Ee

eeeepMaxeeeep

i

nninnm

∈
= −−−− ,)}|({)|( 121121 LL

 
Where )|( 121 eeeep nni L−−  is the conditional 

probability of request for page ie  at the next step.  
Suggest the user will request ne  at the next step. It 
is not guaranteed that ne  equals me , but for all 
pages in E, from the above equation, ne  is most 
probably equal to me . 

Practically, it is not easy to find the ideal 
maximum probability )(max ieP  for a certain user, 
because there are many facts which affect the 
probability and some of which are difficult to get 
and describe in math form. For example, different 
user has different interests and so requests in 
different mode, and for different request time, the 
mode will also alter. Here we use the user’s previous 
requests in the same session to predict the next 
request, without taking personal information into 
account, which is needed for Syskill & Webert (F. 
Masseglia, 1999). Comparing to well known 
WebWatcher (T. Joachirms, 1997), we also do not 
require the web site link structure. We only use the 
logs of web site. This greatly simplifies the process 
of prediction and without losing much accuracy, and 
even sometimes may increase it. 

What  we need  to  do  is  to  find  the  maximum 
conditional probability )}|({ 121 eeeepMax nni L−−  
from the web logs. How to find 

)}|({ 121 eeeepMax nni L−−  is the problem we 
will discuss below. 

4.1 Model of Prediction  

The previous requests 121 ,,, −− nn eee L  have 
different influences to the prediction of the future 
request ne . We suppose that the most recent request 
has the strongest influence, and in most the fact is 
so. This assumption is useful for prediction.  

To extend this, we give a coefficient to weigh 
the influence of every item in the user’s previous 
request. Let nn bbbbB 121 −= L  denote the n-
sequence gotten from web logs, Bf  denote the 
support of sequence B, 121 ,,, −− nn eee L  denote the 
user’s previous request, kC  denote the coefficient 
called weight here of k’s event in the user’s previous 
requests, and iΩ  denote the collection of all n-
sequences in web logs which satisfy in eb = . In 
addition, we define )( kbω as following: 
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We calculate the probability value of ie  to 
appear at the next step by the following equations: 
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   We use the following rule to kC . 

    1,,3,21 −=⋅=− nkCC kk Lα   ,  

α is a constant.            (3) 
Function (3) guarantees that no matter what 

1−nC  is, the result will not change if only α  is the 
same. Simply, we set 11 =−nC , then 

kn
kC −−= 1α . 
In order to find the maximum value 

of )|( 121 eeeeP nni L−− , We only need to find the 
maximum value of )|( 121 eeeeQ nni L−− . We 
calculate )|( 121 eeeeQ nni L−−  efficiently basing 
on the WAP-tree (J.Pei, 2000). For convenient 
statement, we also mark )|( 121 eeeeQ nni L−−  as 

ieQ . We give an example to illustrate our predicting 
process below and then in the session 4.2 we will 
generalize our algorithm.  

Example 1.  Let  { }fedcba ,,,,,   be  a  set   of 
events.  From the  Web log,  we get the  Web  access 
sequence as table 1.   

From the above Web access sequences, we 
construct the WAP-tree (J.Pei, 2000) as figure 1. 
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User 
ID 

Web Access 
Sequence 

User 
ID 

Web Access 
Sequence 

1 abcf 7 fbce 
2 abcea 8 bca    
3 abcf 9 fbfb 
4 abcea 10 fbfb 
5 abcea 11 fbfb 
6 bca   

Table 1: A database of Web access sequences. 
 

 
Figure 1: The WAP-tree in Table 1 

 
Suppose a user request the web site in the 

sequence abc, and we want to predict the next 
request. Based on function (1), if a sequence in the 
web tree hasn’t the node c, it has no contribution to 
Q  value. This reduces much of the work of 
calculation. Let α in function (3) equal 2, and M  
in function (1) equal 3. Then the process of 
calculating Q  in function (1) is as follows. 

First, from the header table of the WAP-tree, all 
of the nodes with c label in the tree is easily reached, 
which are recorded one after one in the Header 
Table. The first node labeled c we get is (c: 5). Its 
parent node (b: 5) is labeled b which is the same as 
the second event of sequence abc . Moreover, the 
parent node of node (b: 5) is labeled a which is the 
first event of sequence abc . So 
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kk CCb . We create a set L to 

hold the optional events. Each node in the set has its 
event label and the event’s Q value. The child nodes 
of (c: 5) are (f: 2) and (e: 3). Now since event f and 
event e haven’t existed in the set L, two new nodes 
are created into the set labeled f and e respectively. 
According to function (1), set their Q values as 

follows (the Q values would probably be updated 
during the future steps): 
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The second node labeled c in the Header Table 
of the WAP-tree is (c: 2). Its parent node (b: 2) is 
labeled b which is the second event of sequence 
abc . In addition, the parent node of node (b: 2) is 
the root of the tree without label a. So in the function 
(1), 0)(,1)()(,1)()( 123 ===== bbbcb ωωωωω , 

31)(
1

1

=+=∑
−

=
αω

n

k
kk Cb . There is only one child 

node of node (c: 2). The label of the child node is a, 
which does not exist in the set L. Then a new node 
labeled a is created into the set L. Its Q value is set 
as follow (the Q value would probably be updated 
during the future steps): 
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The last nod labeled c in the header table is (c: 
1). Its parent node is (b: 4) and the parent node of 
(b:4) is (f:4) which label is not the same as the first 
event in the sequence abc . Similar to the above we 

can get 31)(
1

1

=+=∑
−

=

αω
n

k
kk Cb . The node (e: 1) 

is the only child node of node (c: 1). As the label e 
has existed in the set L, a new node isn’t needed to 
created. What is needed to do is just to update the Q 
value of node e in the set L. 
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 25.475.05.3 =+=∆+=′
eee QQQ  

′
eQ  is the new value of eQ . Set 25.4=eQ  to the 

node e in the set L . 
Now in the set L there are three nodes {f, Q = 

2.8}, {e, Q = 4.25}, {a, Q = 1.2}. The maximum 
value of Q is 4.25. Then we predict the user’s next 
request would be event (page) e.  
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4.2 Prediction Algorithm 

Algorithm 1 (Predicting users’ future requests with 
WAP-tree by calculating the values of conditional 
probability) 
Input: a WAP-tree constructed from web logs, a 
user’s previous request sequence 

121 ,,, −− nn eee L , constant M and α , and number 
n. 

Output: the n events of the user’s most probable 
requests at the next step. 

Method: 
(1). Initialize optional events set φ=L . 

(2). Following 1−ne ’s node-queue of the Header 

Table of the tree., for each node (marked as Θ ) in 

the 1−ne ’s node queue, 

(a) initialize 0=λ , 1=β , node Θ′ = Θ , 

event 1−=′ nee .mark the parent node of node 

Θ′  as parent ( Θ′ ), and mark the event 
exactly before event e′  as parent ( e′ ). 

(b) following node Θ ’s links in the tree from 
child to parent.  

while (the label of node Θ′ is the same as 
event e′ ) 

       βλλ +← , αββ ⋅←  

 )(Θ′←Θ′ parent , )(eparente ′←′  

       end while 
(c) for each child node of node Θ , 
mark the count value of the child node as f , 

then  

 λ⋅
+

=∆
Mf

f
Q  

If the label of the child node hasn’t existed 
in the optional events set L , create a new item 
with the label that is the same as that of the 
child, and set it’s QQ ∆← . 

Otherwise, update Q  value of the item with 
the same label in the set L , QQQ ∆+← . 

(3) For all items in the optional set L , select the n 
top ones with largest Q  values, return their labels, 
which denote the events. 

  
The algorithm shows that we only need to scan 

part of the tree once. In addition, the tree isn’t 
needed to be constructed again when making 
another prediction. Generally, we can put the tree 
in the memory, and according to the algorithm of 
constructing WAP-tree, it can be updated easily. 

We just need to put the user’s new sequence to the 
tree according to the rule of construction. 

5 EXPERIMENTAL EVALUATION 
AND CONCLUSIONS 

In the evaluation of the algorithm, we use the 
following measures. Let },,{ 21 nSSSS L= be the 
set of sequences in a log file. We build WAP-tree 
Models on a subset of these sequences, known as the 
training sequences. The remaining is used as testing 
sequences. If the returned n top events from the 
algorithm contain the factual next request, we say 
that it is a correct prediction. Let +P  be correct 
predictions, −P  be set of incorrect predictions, and 
R be the set of all requests. For some requests our 
algorithm can’t give prediction (in the case that in 
the end the optional set L is empty), so 
normally || RPP ≠+ −+ .  We use the following 
measures (Z. Su, 2000): 

P
precision

P P

+

+ −
=

+
,

| |

P P
applicability

R

+ −+
=  

We use Microsoft anonymous web data as 
experimental data. The data records the use of 
www.microsoft.com by 38000 anonymous, 
randomly-selected users visiting in a one-week 
timeframe in February 1998. It can be downloaded 
from the website (MSWeb). 

As we use the original sequences to build our 
WAP-tree, almost all the testing requests can be 
given predictions. In other words, in the end the 
optional set L isn’t empty. So in our experiments, 
applicability = 1. If our WAP-tree is built from 
frequent sequences, then applicability will decrease, 
but precision will increase. 

As applicability = 1, here we only need to 
analyze precision . 

Let 50=M , 2=α , and we change 
parameter n which denotes the returning quantity of 
predicting events from 1 to 10. The value 
of precision percentage is shown as figure 2:   

Further, we get different events predicting ability 
as figure 3. Figure 3 explains that for the n returned 
events, the greater Q value of one event, the greater 
probable precision the event can be. This means that 
Q can approximately represent the actual conditional 
probability.  

As we can see, the event with the greatest Q value 
still hasn’t very great precision percentage. There 
are some reasons. The important one is that, 
different users have different request sequences, and  

even the same user in the different time the 
request sequence will also change. We can reduce 
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applicability to increase precision. As we say 
previously, we can first mine the web logs to collect 

frequent  sequences  with  certain  minimum support 

Figure 2: A curve showing the change of precision 
according to different quantity of returning events. 

 

 Figure 3: Precision of top events ranked by Q values. 
Each histogram represents the precision percentage of the 
event with a certain rank. 

 
and build WAP-tree from the frequent sequence 
instead of from original sequences. This method not 
only increase precision, but also decrease the time 
consumed in prediction. One shortage of this method 
is that for some previous sequences, it can not give 
predictions (optional set  in our algorithm is finally 
empty), or we say that applicability will decrease to 
less than 1. There exists contradiction between 
applicability and precision. To let applicability equal 
1 or approximately equal 1 and still need high 
precision, we can use n top ones instead of the 
greatest one. In some cases, we need to compromise 
between precision and applicability. This is very 
useful in recommendation systems. 
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