
INTEGRATING PROCESS- AND OBJECT-APPROACHES
An ontological imperative

Shivraj Kanungo
Depertment of Management Science, The George Washington University, 2115 G Street NW, Washington DC, USA

Keywords: object, process, structured, ontology, methodology

Abstract: There is an emerging belief about the virtually unanimous agreement that the object-oriented paradigm is
superior to the classical (structured) paradigm. We do not accept such unqualified judgments. In this paper,
we address the differences from the ontological perspective. We adopt a discursive approach to analysing
and discussing the differences, similarities and resolution approaches. We accept the position that object-
oriented programming is here to stay and is one of the legitimate silver bullets. Once we contrast the two
approaches, we explain how the consumer of the approach perceives its utility. By employing this approach,
we highlight the end-user and developer perspectives. We conclude the paper by restoring some perspective
on the uncontested superiority of the object paradigm over the classical paradigm. Lastly, we highlight
research and pedagogical issues regarding contemporary treatment of structured and object-oriented
approaches.

1 INTRODUCTION

This paper addresses the relationship between
structured or process-oriented and object-oriented
approaches, in the context of information systems
development. The ontological imperative for
addressing this issue lies in the fact that both
approaches are important and fundamental ways of
viewing the world. One is inherently static and the
other dynamic. Both are ontologically independent
in that one cannot subsume the other, or be
represented in terms of the other, gracefully. Given
that some saw the “future of the two paradigms to be
settled by experimentation (de Champeaux et al.,
1990a)” and given further that questions have begun
to emerge over the assumed or imputed primacy of
the OO approach (Coad and Yourdon, 1991;
Rumbaugh et al., 1991; Jacobson et al., 1992;
Schlaer and Mellor, 1992; Booch at al., 1996), it is
important that we revisit this issue. The conceptual
tool we employ in this research is that of ontological
differences that exist between process-based and
object-based approaches. The question we address is
the following: Is the traditional process of
“understand conceptualise build” (P1) giving
way to “conceptualise understand build” (P2)?
There is an assumption in P1 that systems can
indeed be specified. There is also an assumption that
once we understand what to build, we can think of

how to build the system (the design process). This
assumption implies the decoupling between design
and analysis and seems to be premised on the belief
that de-linking design and analysis should lead to
better conceptual models.

The problem that we describe has turned out to
be persistent. Programmers want crisp program
specifications and users prefer to communicate in
their natural language. The approach that has been
adopted all along has been to inject some formalism,
standardization and precision into how users
communicate. The general idea is that if precision is
injected upstream, it will be reflected in the
downstream activity of programming.

We start by giving an overview of process-
oriented (PO) and object-oriented (OO) approaches
to system development. Both have advantages and
disadvantages. However, the object-based approach
has been entrenched solidly in the programmer’s
domain. Given this, the essential question that
remains is that should this reality constrain the end
users’ conceptualisation? We then present the
importance of the ontological perspective when
viewing these approaches. Following that we
analyse the PO and OO approaches for their
differences, similarities and overlaps.

237
Kanungo S. (2004).
INTEGRATING PROCESS- AND OBJECT-APPROACHES - An ontological imperative.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 237-244
DOI: 10.5220/0002623402370244
Copyright c© SciTePress

2 PROCESS AND OBJECT-
ORIENTED APPROACHES

System development methodologies can be
generally divided into several categories. Two major
methodological approaches are structured analysis
(SA) also referred to as process-oriented by some
authors (Agarwal et al., 1999); and object-oriented
(OO) approaches. There are other methodological
approaches also. However, they are not widespread.
They include data modelling and behavioural
modelling. While there is a huge push to adopt OO
approaches, the rate of absorption has not been high.
This has been attributed to perceptions and
organizational and social issues in the larger
software development environment (Perry et al.,
1994). We describe the two approaches in following
sections. While there are many variants of these two
approaches, we will concentrate on the archetypal
characteristics of these approaches and avoid
delving into the finer grained differences that exist
within each.

Researchers as well as practitioners recognize the
importance of both (process and object) constructs.
For instance one of the most prominent proponents
of recognizing the importance of both constructs are
Dori and Reinhartz-Berger (2003) who clearly
borrow from the simplicity of the dataflow
diagramming and propose that UML needs to be
simplified.

2.1 Structured Analysis and Design
Methodology

Structured analysis and design is often referred to as
the data flow modelling methodology. Structure
analysis and design is one of the frequently used
approaches for system development. It focuses on
the flow of data and it's processing. The set of
modelling tools includes dataflow diagram, data
dictionary, process specification, entity-relationship
diagrams, state-transition diagrams, and structure
chart. These tools allow system analysts to: focus on
important system features while downplaying less
important features; discuss changes and corrections
to the user's requirement with low cost and minimal
risk; verify that the systems analyst correctly
understands the user's environment and has
documented it in such a way that the system
designers and programmers can build the system.

2.2 Object-Oriented Methodology

Object Oriented analysis uses the partitioning of the
problem with respect to objects when analysing the

problem domain. The concept of object orientation
in software development has it roots in Smalltalk,
which is a purely OO programming language.
Problem analysis is the analysis and description of
the real world, its entities, their attributes and their
relationships. Therefore, it makes sense to use OO
concepts in problem analysis. The primary
motivation for object orientation is that as a system
evolves, its functions tend to change, but its objects
remain unchanged. Thus, a system built using
object-oriented techniques may be inherently more
maintainable than one built using more conventional
functional approaches (Davis 1993).

Object-oriented methodology (OOM) emerged in
the 1980s with the popularity of object-oriented
languages. OOM uses abstraction as a method of
isolating properties that are not relevant to a
particular function from those that are. These
functions are then distributed among components, or
encapsulated. Each software component isolates a
single function, therefore hiding that function to
users of the object. One of the most important
attributes of these components is referred to as
polymorphism that is, the fact that a component can
take on different forms based on the conditions in
which it is operating. This allows greater reuse of
objects, whether by sharing, copying or cloning, and
adjusting them.

It should be clear from the short descriptions of
each methodology that the primary focus for each
approach is different. For structured approach it is
the process and for the object-oriented approach it is
the object. The importance of these differences
arises when these conceptualisations start
influencing the way an observer (be it an end user,
an analyst or a programmer) views the world. There
are, in our opinion, ontological differences between
the two approaches. These differences, when
understood, can account for the meaningful and
judicious use of both approaches. We now move on
to understand the meaning and role of ontology in
the context of system development approaches.

While Dori’s approach to integrate these
approaches as the OPM is commendable, we
develop an argument for a looser coupling between
methodology and ontology. We do so because
approaches like Dori’s OPM may end up suffering
from similar problem that UML is facing today
(being monolithic as a methodology and hence
unwieldy). We also agree with Hughes and Wood-
Harper (1999) that most modelling is predicated on
the assumption that the system development process
is rational and predominantly technical. It is also
important to understand that purity of any
methodology cannot be guaranteed at the time of
practice. As a result methodologies are necessary but
not sufficient to ensure the development of valid and

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

238

robust information systems. This is because
developers possess varying levels of expertise. Yet
as Hughes and Wood-Harper observe, “as developer
experience increases, there is a real danger that the
methodology becomes a fetish at the expense of
personal and critical reflection. Moreover,
developers form mental constructs to influence the
use of methodologies. These mental constructs
influence their own sense-making and decision-
making activities and explain the ways in which a
methodology is used differently by one person as
compared with another, and indeed as compared
with the original proponents of the methodology (p.
1182).”

3 ONTOLOGY AND THE LINK
WITH SYSTEM
DEVELOPMENT APPROACHES

Ontology is the study of the nature of being. The
term “ontology” comes from “ontos,” the Greek
word for being, and so literally means the study of
being. The subject of ontology is the study of the
categories of things that exist or may exist in some
domain. The product of such a study, called an
“ontology,” is a catalogue of the types of things that
are assumed to exist in a domain of interest D from
the perspective of a person who uses a language L
for the purpose of talking about D. This paper is
about the language and schema associated with
abstractions used to support conceptual modelling of
real systems in the process of information system
development. We are not concerned with developing
ontologies for specific domains (Gruninger and Lee,
2002).

From a linguistic perspective, object-oriented
and process-oriented methodologies provide their
specific “linguistic hints (Steels and Kaplan, 1999)”
that enable or nudge a user to recognize in an
analytical context something to be an “object” or
something else to be a “process.” In other words, the
OO approach encourages users to think in terms of
objects while in the PO approach the primary

vehicle to understand a system is to capture the flow
of information (and even physical flow).

Why is ontology important for us in this context?
As different programming styles influence the way
we think about the world and therefore, as,
programmers want to extend their languages to suit
their problem domains, the consequence is that
programmers define new languages all the time. In a
similar vein, the language for translating users’
requirements into a software product keeps evolving.
However, to say that object-orientation is inherently
better (as a language or approach) may be going too
far. This is important given Yourdon’s prediction
(deChampeaux, 1990b) that people will not change
to OO unless they have to. This brings to question as
to which people will shift. There is no question that
programmers have made the shift to the OO
paradigm. We invite caution here because, while
most of the popular compilers of today support
object-oriented programming, there is no way to
assess how many programmers employ OO practices
and to what extent.

4 PO AND OO AND ONTOLOGY

Fundamental objectives associated with analysis and
programming (important and core aspects of any
system development methodology) have long been
to standardize problem domain terminology and
semantics and provide basis for standardized
descriptions of problems to be solved in the domain.
In this context it is instructive to understand
ontology as (terminology + semantics). Ontology of
models is a precise syntactic and semantic definition
of what is taken for granted, namely the languages
available for expressing the structural, behavioural,
and functional models). Table 1 shows a comparison
between the OO and PO approaches.

If we analyse whether end users feel more
comfortable with classes, objects and instances or
activities, processes and data flows, it becomes
obvious that, it is the latter. However, a software
developer tends to be far more comfortable with
classes, objects and instances because it may mirror

Object-Oriented approach
Booch et al. (1996), Coad and Your
Jacobson et al. (1992), Rumbaugh e
(1991), and Shlaer and Mellor (1992
Process oriented approach
Structured Analysis and Design Tec
(SADT) (Ross, 1977), Structured an
(Gane and Sarson, 1979)

INTEGRATING PROCESS- AND OBJECT-APPROACHES: AN ONTOLOGICAL IMPERATIVE
Table 1: Contrasting OO and PO approaches

don (1991),
t al.
)

Ontology: Classes, objects, instances
Class – common properties, behaviours.
Inheritance, polymorphism, encapsulation

Ontology: Activities, processes, data, data sources

hnique
alysis

Hierarchy of activities and processes
Representation: Visual.

239

or be close to the conceptual primitives that he or
she deals with on an everyday basis.

The fundamental differences between OO and
PO approaches have been captured in a panel
discussion in deChampeaux et al. (1990a).
Structured analysis cannot be used effectively to
produce the requirements for a system that will be
designed and implemented in an OO fashion. While
some panellists were clear that PO approaches could
not be changed or extended to support OO
development, some suggested that adding entity-
relationship diagramming and extensions would
help. The panel also believed that some application
domains are better suited for one kind of approach
than the other. The fundamental differences between
the OO and PO approaches (as also the need to co-
operate) are also captured by Lee and Wyner (2003)
who lament that for the most part, however, “system
behaviour continues to be modelled using traditional
tools such as state diagrams and dataflow diagrams,
which remain outside the scope of the specialization
hierarchy used to such advantage with objects.”

5 DISCUSSION

It is important to recognize two questions here. First,
is the quality of analysis using OO approaches
“better” that that using PO approaches? And if so,
for whom? Second, is it fair to impose on the end
user an ontology that is meaningful to the
programmer, but is not consistent with the end users’
worldview or vocabulary? With respect to the
second question, Alspaugh and Anton (2001)
question the desirability of characteristics of
requirements and specifications that are consistent
with object-orientation.

Take the example of a new customer in a bank
that wants to open an account. When we employ an
object-oriented approach to analyse and design an
information system for the bank, “customer” and
“account” are likely to be the two least controversial
classes. Opening of an account would likely be
modelled as a link between “customer” and
“account.” While this is a meaningful
implementation view (that would show cardinatilies
and connote messages being passed between the two
objects), customers do not interact with new
accounts. They interact with the branch manager
(typically). This is an instance of how design and
analysis views are cluttered in OO approach. In this
context, it is of interest to quote Jacobson (1994)
who claims: “We think it is bizarre to apply the way
of thinking that governs computer systems to
business processes (p.36).”

For Parsons and Wand (1997) the starting point
is that object-oriented design methods use ontologies
as domain models for specifying software systems.
In doing so, object-oriented analysis may interfere
with understanding the domain and drawing
attention to implementation concerns. For analysis,
representation-based foundations are more suitable
than implementation-based approaches. In so
arguing the weakness of the implementation driven
approach of object-orientation, Parsons and Wand
(1997) have argued that representation-based
foundations are more suitable than implementation-
based approaches. Another instance of such
arguments is that the current object-oriented
paradigm is driven by implementation
considerations rather than conceptual aspects
(Artale, 1996). The object-oriented approach
emerged as an implementation paradigm, motivated
by the objective of building better software more
efficiently (Parsons and Wand, 1997).

The implication of such arguments is that
conceptualising the whole system in terms of
“objects” is relatively far more difficult than to
experience coding improvements as a result of
object-orientation. For instance, there is no standard
equivalent of a context level DFD in traditional OO
methodologies. The advantage of DFDs is that they
support the notion of emergence and hierarchy.
Decomposition that is easy from the end users’
perspective is often not supported. In most OO
frameworks structural and behavioural
decomposition are defined as separate concepts with
no or few combinations or relations to each other.
Concepts for structural decomposition are e.g.
aggregation and composition. Concepts for
behavioural decomposition are e.g. composite states
for state machine specified behaviour and
procedures as part of transitions. While aggregation
and composition are specified by special
associations between classes, state machines are
specified for individual classes. Implications of a
structural decomposition on the behaviour and of
behavioural decomposition on the structure are often
defined rather vaguely.

Similar sentiments have been expressed as expert
comments. For instance, Glass (1995) reports that in
the context of scientific and engineering realm too
“users don’t think in terms of objects, they think in
algorithms and tasks (p.1).” The direct implication is
that object-oriented methodologies do not
necessarily lend themselves well to understanding
and analysing problems and situations that are
inherently process-oriented or have temporal
linkages. Consequently, many practitioners depend
on “traditional” process-oriented models to analyse
business situations and then “translate” those
specifications into object-models for

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

240

implementation. This is made even more important
by the fact that well accepted SRS guidelines and
formats continue to follow and adhere to the IEEE
standards (IEEE, 1998).

5.1 Perspective matters

It makes a difference when we analyse modelling
approaches from a specific perspective. Stated
differently, a user’s view of an information system is
very different from the developer’s view. It has been
stated that OO is natural. The question arises, natural
for whom? The OO paradigm sprang from language
(Simula and Smalltalk in 1960’s, and C++, Eiffel
later), matured into design and finally (in the mid- to
late 80’s) moved into analysis. So it is “natural” for
programmers. The OO approach was developed by
developers for developers to make interaction with
users easier and more meaningful.

Often, the OO approach is presented as a simpler
and more efficient alternative to the PO modelling
approach. A major problem is that there are many
OO approaches. The unified modelling language
(UML) has attempted to unify diverse OO methods
into a unified standard. However, the UML lacks a
system-theoretical ontological foundation (Soffer et
al., 2001).One of the main problems of UML is
model multiplicity. As Dori (2002) observes, “even
with superb CASE tools, keeping the diagrams
synchronized and preventing the introduction of
contradictions and mismatches in the overall system
(which, in UML, exists only in the modeller’s mind)
become daunting tasks beyond anyone’s cognitive
ability (p. 83).” Dori goes on to observe that “many
software developers struggle with UML’s sheer
complexities and inconsistencies, especially
regarding the modelling of system dynamics in OO
settings. Disliking it, they use it mainly because their
organizations follow the standard (italics mine). ”

Two things emerge from the preceding
discussion. First, software developers use the UML
(in spite of its limitations) because it can be, at some
level, used to generate software systems. So
developers do see some value. The second point has
to do with the end user community. If the UML
presents so many difficulties to the developer
community, it can certainly not be a “natural”
approach for end users.

5.2 The design-analysis relationship

For both OO and PO, there are problems when it
comes to the analysis-design boundary or interface.
For both PO --- we know there are weaknesses (for
instance how do you relate DFDs to structure charts)
and OO (but what about the fuzzy boundary between
OOA and OOD; or for that matter the belief that
OOA is not required, or rather, if OOA is done
properly, we can skip OOD because the OOA
deliverable serves as the ideal input to OOP).

However, there is hardly any agreement on
which aspects of the object-oriented development
process belong to analysis and what parts to design,
because the boundary between OO analysis and OO
design is distorted (Jalote 1997). The primary
difference between them is that OO analysis models
uses terminology in the problem domain, to help the
analysts (doing the translation task of understanding
users’ views and translating it into the OO view) to
understand and specify the problem, while OO
design focuses on and models the solution to the
problem (so that the developer can get an OO
specification). Therefore, the methodologies and
their representations employed in OO analysis and
OO design look quite similar, OO analysis dealing
with the problem domain and OO design with the
solution domain. Although there is no clear cut
between analysis and design, some authors like

User (Phase I) Analyst (Phase II) Developer (Phase III)

Meeting functional
requirements and using the
software system effectively
and productively

Getting the user to think
through all possible scenarios
and requirements and
validating those.

Getting a stable set of
requirements and
specifications so that the
software can be engineered.

Expectations

Users think in terms of their
workflow, how they relate to
people and things around
them

Sees both sides and is a
conduit. May buffer or filter
information and, in the
process, help or hinder.

Sees specifications and
produces software. Is quite
distanced from the actual
deployment of the software.

Concerns

Uses natural language that is
typical to the context and to
the domain in which users
operate.

Has to be bilingual to
translate requirements into
specifications help negotiate
when there is disagreement

Uses formalisms and
programming languages and
is not concerned about the
context and semantics.

Language
employed

Figure 1: Suggested framework for the coexistence of OO and PO modelling approaches

INTEGRATING PROCESS- AND OBJECT-APPROACHES: AN ONTOLOGICAL IMPERATIVE

241

Jalote (1997) consider it to be one of the strong
points of the object-oriented approach, in which the
transition from analysis to design is "seamless". The
problem is that the desirable characteristics of de-
linking of design and analysis (separating the “what
to build” from the “how to build”) are often lost. OO
enthusiasts often claim that this fusion of analysis
and design is a productivity enhancer. However, in
OO analysis, the objects focus on the problem
domain and represent (generally) things or concepts
with meaning in the problem domain and, in OO
design, the objects are called semantic objects as
they have meaning in the problem domain
(Monarchi and Puhr 1992). In addition to analysis,
the process-oriented design concentrates not only on
the static structure of the problem or solution
domain, but also on the dynamic behaviour of the
system.

We are proposing a more encompassing
ontological framework that leverages the strengths
of every stakeholder and participant in the system
development value chain. The basis for this is shown
in Figure 1.

We divide the system development into
requirements modelling, design and development. It
is clear that in most applications, Phase I is
dependent on the client’s or user’s ontology. It is
legitimate to ask whether users, in general, have an
ontology. One problem of developing a specific
ontology is that of infinite regress based on the
extreme case of every individual has his/her own
ontology. In general, the PO view offers far more
utility that the OO view. End users are more
comfortable with narrating what (changes) happen to
people and things, when these changes take place,
the temporal order in which such changes affect
people and things, the outcomes of certain acts or
events, decisions and bottlenecks in a sequence of
events, whether events or activities are parallel or
serialized, and so on. While it is entirely legitimate
to argue that when users identify people and things,
they are, for all intents and purposes, identifying
objects (and maybe, classes). However, we have
argued in this paper that users should not be
persuaded to think in terms of objects only (as is
required by the OO approach) because (a) that is not
a user’s natural world view and (b) it undermines the
user’s narrative process by limiting a user’s
vocabulary.

We also propose Phase 2 to be a formal analysis
and design stage where analysts play a pivotal role.
A primary role of systems analysts is one where they
help domain experts (or the clients) communicate
effectively with the programming and development
community. Systems analysts assume primacy
because they enable the coexistence of both
ontologies. In so doing, the programmer or

developer would get what they want – an OO
specification and a user would be able to able to
employ a more friendly and natural language to
communicate requirements.

A critical implication of the approach that is
being suggested is that it helps avoid becoming
methodology-centric. An end-to-end methodology
leaves little room for flexibility and assumes that
since the grammar on which the methodology is
premised is mathematically closed, the end product
will be acceptable. However, the methodology is as
good as the users. Our proposal removes the
assumption that OO is “natural.” This frees users
from thinking in terms of objects. This approach also
re-establishes the importance of adhering to a well-
defined process. It is important to distinguish
between a process and a methodology. To start with
a process could subsume one or more
methodologies. However, the converse is not true. A
process can be considered a generic set of steps to
provide an output when some inputs are provided.
Take the “process” of requirements elicitation. This
process, when defined for an organization, could list
out alternate methodologies that can be used to
operationally this process. These techniques could
include use cases, scenarios (Holbrook, 1990)
narratives, prototyping (Jordan et al., 1989).
Essentially, we would have allowed the inclusion of
multiple perspectives and users (Easterbrook, 1991).
The process model has been reflected upon by others
also (Richards, 2000). The advantage of adopting a
process-centric view for system development is that
the logic of process discipline takes over. The logic
of process discipline is that the quality of the
conversion process (from user specified
requirements – in whatever form – to programmer
preferred object models) is now subject to the same
continuous improvement pressures that all other
deliverables are in the software development
lifecycle.

Phase 2 is important because it allows
participants to operationalize the requirements
negotiation concept (Boehm et al., 1995). The
requirements negotiation concept accepts the fact
that part of the understanding that emerges among
stakeholders of a system includes pruning some
parts of the taxonomy and elaborating others
(Grünbacher and Briggs, 2001). The resulting
taxonomy (ontology as we have defined it) becomes
an organizing framework for emergent win
conditions. The win conditions include an expanded
vocabulary and hence a common language.

Decoupling the user’s view from the developers
view and linking them by human (analyst)
intermediation is not new or radical. By doing that
we will be formalizing that which is already
explicitly practiced (that there are layers and layers

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

242

of interpretations between users’ requirements and
the developers’ views of the design based on
specification). By formalizing such intermediation
we will allow participants in the system
development process to retain and deal with their
metaphors (Kendall and Kendall, 1993).
Additionally, we will preserve the variety that is
inherent in any functionally rich system.

We believe that instead of a monolithic
methodology (e.g., one based on UML), there should
be a place for multiple methodologies. In order for
proper and continuous natural selection to take place
in the world of methodologies, all three classes of
participants – users, analysts and developers – need
to participate vigorously in the larger discourse. So
far, the developer community has been the most
active and dominant in showing concern for this
issue. Therefore, unless the community of end users
(or researchers representing them) start playing a
more active role in the process of system
development and critically reflecting on how to
conceptualise and think about information systems,
we will keep on ending up with analytical and
modelling approaches that are more responsive to
the needs of the developer community.

Our proposal is consistent with other proposals
(Kosaka, 1997) that posit that a shift of ontological
assumptions in systems analysis from the realist
world to the socially constructing world. This would
facilitate the smooth transition of OO modelling
from a static view to a dynamic one.

Apart from abstract issues like temporal
dynamics, there are other major implications of our
proposed approach for both research and practice.
Once modelling is understood as a social process as
much as a technical process, the importance
accorded to the ontology of different stakeholders
will be formalized. From a research standpoint, this
will mean the development of meta-models for
retaining multiple ontologies while attempting to
aspire to a closed and integrated framework to
seamlessly accommodate all these ontologies. In this
context metrics in connection to the use of specific
modelling languages for different modelling tasks
should also be developed based on existing work
(Krogstie, 1998).

From a pedagogical standpoint, classroom
instructors will be better able to sustain a discourse
on the appropriateness of modelling approaches for
different constituencies and stages in a lifecycle.
Specifically, the uncomfortable relationship that
exists between business school IS curriculum and
the engineering school CS curriculum will be
mitigated. Our framework provides a framework to
see exactly where the complementarities lie.

6 CONCLUSION

Taking a balanced look at both approaches (the
process-oriented and object-oriented) and
decoupling them helps avoid falling into the trap of
accepting (in error) the primacy of one worldview
over another. We have shown in this paper the both
the process-oriented and object-oriented approaches
are desirable and useful when applied appropriately.

REFERENCES

Alspaugh, T. A. and Ant´on, A. I. (2001). Object-
Orientation in Requirements, Specifications and
Models, TR-2001-12, Department of Computer
Science, College of Engineering, North Carolina State
University, Raleigh, NC 27695-7534 USA,
http://www.isr.uci.edu/~alspaugh/pubs/alspaugh-tr12-
oo-2001.pdf.

Boehm, B.; Bose, P.; Horowitz, E. and Lee, M. J. (1995).
Software Requirements Negotiation and Renegotiation
Aids: A Theory-W Based Spiral Approach,
Proceedings of ICSE 95.

 Booch, G., Rumbaugh, J., and Jacobson, I. (1996). The
Unified Modeling Language for Object-Oriented
Development, Version 0.9, Rational Software
Corporation, July 1996.

Coad, P. and Yourdon, E. (1991). Object Oriented
Analysis, Prentice-Hall Englewood Cliffs NJ.

de Champeaux, D.; Constantine, L.; Jacobson, I.; Mellor,
S.; Ward , P; and Yourdon, E. (1990a). Panel session:
Structured analysis and object-oriented analysis,
Proceedings of the European Conference on object-
oriented programming systems, languages, and
applications, October 21-25, Ottawa, Canada.
(Addendum to proceedings), 15-17.

de Champeaux, D.; Constantine, L.; Jacobson, I.; Mellor,
S.; Ward , P; and Yourdon, E. (1990b). Structured
analysis and object oriented analysis, Proceedings of
the European Conference on object-oriented
programming systems, languages, and applications,
October 21-25, Ottawa, Canada, 135-139 .

Dori, D. and Reinhartz-Berger, I. (2003). An OPM-Based
Metamodel of System Development Process,
Proceedings of the 22nd International Conference on
Conceptual Modeling (ER 2003), Chicago Illinois,
October 13-16.

Easterbrook, S. (1991) Elicitation of Requirements from
Multiple Perspectives PhD Thesis, Department of
Computing, Imperial College of Science, Technology
and Medicine, University of London, London SW7
2BZ.

Gane, C. P. and Sarson, T. (1979). Structured system
analysis: Tools and techniques, Prentice-Hall
International, Englewood Cliffs, NJ.

INTEGRATING PROCESS- AND OBJECT-APPROACHES: AN ONTOLOGICAL IMPERATIVE

243

Grünbacher, P. and Briggs, R. O. (2001). Surfacing Tacit
Knowledge in Requirements Negotiation: Experiences
using EasyWinWin, Proceedings of the 34th Hawaii
International Conference on System Sciences.

Gruninger, M. and Lee, J. (2002). Ontology: Applications
and design, Communications of the ACM, 45(2), 39-
47.

Holbrook, C. H. (1990). A Scenario-Based Methodology
for Conducting Requirement Elicitation, ACM
SIGSOFT Software Engineering Notes, 15 (1), 95-
104.

Hughes, J. and Wood-Harper, T. (1999). An empirical
model of the information system development process:
A case study of an automotive manufacturer,
Proceedings of the 10th Australian Conference on
Information Systems, 1181-1192.

IEEE (1998). 830-1998 IEEE Recommended Practice for
Software Requirements Specifications.

Jacobson, I. (1992). Object-Oriented Software
Engineering: A Use-Case Driven Approach, Addison-
Wesley: Reading, Massachusetts.

Jacobson, I. (1994). The Object Advantage, Addison-
Wesley, Workingham, England.

Jacobson, I., Christersson, M., Jonsson, P., and Overgaard,
G.G. (1992). Object-Oriented Software Engineering,
Addison-Wesley, Reading MA.

Jordan, P. W.; Keller, K. S.; Tucker, R. W. and Vogel, D.
(1989). Software Storming: Combining Rapid
Prototyping and Knowledge Engineering, IEEE
Computer, 39-48.

Kendall, J.E. and Kendall, K.E. "Metaphors and
Methodologies: Living Beyond the Systems Machine,"
MIS Quarterly, Vol. 17, No.2, 1993, pp. 37-47.

Kendall, J.E. and Kendall, K.E. Metaphors and their
Meaning for Information Systems Development,"
European Journal of Information Systems, Vol. 3, No.
1, 1994, pp. 37-47.

Kosaka, T. (1997). Task analysis makes is methodologies
object oriented, Working Paper, Department of
Management, Aichi-Gakuin University,
(http://www.ms.kuki.sut.ac.jp/KMSLab/kosaka/papers
/bcs9609.pdf), Last accessed October 30, 2003.

Kvavik, K. H.; Karimi, S.; Cypher, A. and Mayhew, D. J.
(1994). User-centered processes and evaluation in
product development, Interaction, 1(3), 65-71.

Lee, J. and Wyner, G. M. (2003). Defining specialization
for dataflow diagrams, Information Systems, 28(6),
651-671.

Parsons, J. and Wand, Y. (1997). Choosing classes in
conceptual modeling. Communications of the ACM,
40(6), 63–69.

Richards, D. (2000). A process model for requirements
elicitation, Chan, Taizan: Ng, Celeste See Pui(Ed/s) in
Proceedings of the 11th Australasian Conference on
Information System (ACIS 2000), Information
Systems Management Research Centre, Queensland
University, Brisbane, Australia.

Rickman, D. M. (2000).A Process for Combining Object
Oriented and Structured Analysis and Design, 3rd
Annual Systems Engineering & Supportability
Conference, 23-26 October.

Ross, D. (1977). Structured analysis (SA): A language for
communicating ideas, IEEE Transactions on Software
Engineering, 3(1), 16-34.

Rumbaugh, J.; Blaha, M.; Premerlarni, W.; Eddy, F. and
Lorenson, W. (1991). Object-Oriented Modeling and
Design, Prentice-Hall Englewood Cliffs NJ.

Shlaer, S., and Mellor, S. (1992). Object LifeCycles:
Modeling the World in States, Prentice-Hall
Englewood Cliffs NJ.

Soffer, P.; Golany, B.; Dori, D. and Wand, Y. (2001).
Modeling off-the-shelf information system
requirements: An ontological approach, Requirements
Engineering, 6(3), 183-199.

Steels, L. and Kaplan, F. (1999). Situated Grounded Word
Semantics, IJCAI-99, the Sixteenth International Joint
Conference on Artificial Intelligence, July 31-Aug 2,
Stockholm, Sweden.

 Krogstie, J. (1998). Integrating the Understanding of
Quality in Requirements Specification and Conceptual
Modelling, ACM SIGSOFT Software Engineering
Notes, 3(1), 86-91.

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

244

