
META DATA FRAMEWORK FOR ENTERPRISE
INFORMATION SYSTEMS SPECIFICATION

Aiming to reduce or remove the development phase for EIS systems

Jon Davis, Andrew Tierney, Elizabeth Chang
School of Information Systems, Curtin University of Technology, GPO Box U1987,Perth WA 6845, Australia

Keywords: Enterprise Information System, meta-data, framework, meta-data driven application, application generation

Abstract: This paper proposes a process for implementing a meta-data approach to defining a platform independent
operational computer system application. It identifies Enterprise Information System (EIS) type systems as
ideal candidates for implementation using this meta-data, based on the simplification opportunities available
due to the typically visual and transactional component bias of EIS systems. It describes architecture for the
development of a suitable meta-data based application generator system. This development could lead to the
generation of new accelerated EIS development methodologies in business modeling, analysis, design,
system deployment and global information exchange.

1 INTRODUCTION

Common core system development methodologies
such as the Waterfall, Spiral, Fountain and V models
(Sommerville, 2000), (IEEE, 1998), (IEEE, 1997)
have not been fundamentally altered as a result of
modern technologies and in general we are still
maintaining the basic paradigm for system
development; analysis, design, develop code, test
and deploy. New system development
methodologies such as Prototyping, Agile Processes,
Big Ball of Mud (Pressman, 2000), (Martin, Raffo,
2000), (Donzelli, Iazeolla, 2001), typically propose
differing levels of task decompositions, parallelism,
customer interaction etc and certainly do provide
specific advantages when dutifully employed but
they are not guaranteed to necessarily change the
magnitude of the total effort.

An Enterprise Information System (EIS) must
necessarily start with a review of its requirements
and the preparation of a design. Our project proposes
that performance of the analysis combined with an
efficient collection of this information can also
perform the bulk of the design phase, largely as a
simultaneous activity. Hence the two steps may be
merged in our proposed model.

Further, with the collective design requirements
stored and available in a suitable meta-data format
(from the first stage), we believe that most (if not
all) EIS systems can be executed automatically with

the availability of suitable runtime components. This
expectation is based on the well structured nature of
EIS applications; highly visual and interactive
applications that prompt for the entry of appropriate
data by the users, employ strong rule based actions
and utilize database transactions to complete the
action.

The introduction of such an approach has the
potential to drastically reduce the time to develop
and deploy an EIS system. Effectively, once the
analysis and design have been completed the system
would become available for immediate use! The
virtual elimination of the coding combined with the
minimisation of the testing and deployment stages
has significant benefits for both the developer and
the end users.

This project aims to develop an alternative
development methodology using a meta-data
standard that can be extended upon for defining and
producing Enterprise Information Systems.

2 PROGRESSIVE MODELING
METHODOLOGIES

This project will be influenced by feature subsets of
these improving and emerging technologies:
• 4th Generation Language: The most common

4GL standard is Structured Query Language
(SQL) which has become the standard in

451Davis J., Tierney A. and Chang E. (2004).
META DATA FRAMEWORK FOR ENTERPRISE INFORMATION SYSTEMS SPECIFICATION - Aiming to reduce or remove the development phase for
EIS systems.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 451-456
DOI: 10.5220/0002626404510456
Copyright c© SciTePress

database management, and will be supported as
the data repository standard for this project.
Mainstream progress in application
development was restricted to proprietary tools
although UML (OMG, 2003), (Kruchten, 2000),
(Quatrani, 2001) has emerged as a popular and
quasi-standard design toolset.

• Unified Modeling Language: UML has been
progressively developed into a precise toolset
for the specification of system requirements,
and is being provided with continually
improving third party code generation options
(Lethbridge, Laganiere, 2002), (Allegrini,
2002), (Guizzardi, Herre, Wagner, 2002). A
weakness of UML is that it has such
extraordinary breadth and requires
correspondingly high technical skills, requiring
the difficult marriage of UML experts with
business analysts and business process experts
to obtain success in the commercial world. We
believe that a less complex specification can be
achieved for the subset of issues in EIS systems
(and that can subsequently be used with far less
technical expertise) and will draw on UML
features.

• Object Modeling Group - Model Driven
Architecture: OMG/MDA (OMG, 2003),
(Tolk, 2002) provides a solid guiding
methodology based on the use of UML to
provide the platform independent model, and
following through with the efficient
development and deployment of the target
system. This project will utilize the general
philosophy of MDA combined with subsets of
modified UML.

• DARPA Agent Markup Language and
Ontology Inference Layer: DAML+OIL
(DARPA, 2003), (W3C, 2001), (Qasem, 2001),
(van Harmelen, Horrocks, 2000) provides a
foundation for the classification of elements and
as a means for automating inference in data sets
and has been inspired by the burgeoning
information base available in and via the
Internet. DAML+OIL lend useful schema
elements and provide a logical documentation
and information interchange framework.

• OWL Web Ontology Language: OWL (W3C,
2004), (Kendall, Dutra, 2002) is a web ontology
language derived from DAML+OIL which is
seeking candidate recommendation with W3C.
The EIS ontology that is ultimately finalized by
this project would sensibly seek to utilize OWL.

• Interface Definition Language: IDL (IBM,
2003) is the OMG’s language for the

development of programming language
independent object interfaces. Its relevance for
this project is as a specification source for
modeling generic objects.

These models tend to be concerned with
providing methodologies for system analysis and
design. This research aims to create an automated
solution for EIS systems development from a meta-
data framework. It utilizes a meta model driven
architecture and ontology based computing
technologies to provide the target platform
independent meta-data model of an entire EIS
specification, along with prototype platform
dependent runtime components.

3 CONCEPTUAL FRAMEWORK
FOR META-DATA APPROACH

The success of a meta-data approach will be largely
reliant on the functionality that can be provided as
defined by higher level components with the
associated efficiencies gained by the corresponding
reduction in continual individual duplication of
components. This approach is not exclusive of the
need for access to lower level components but for
EIS systems it is the ready availability of the higher
level functions that will provide the expected major
efficiencies.

An inherent feature of EIS systems is the highly
visual and interactive nature of the applications. The
success of EIS applications is reliant on the entry of
appropriate data by the application users, and they
are heavily biased towards rules based responses and
database transactions as the appropriate action.

A common paradigm in modern code generation
that has become a virtual standard following on from
the advent of event driven programming is a
separation of the actions (implemented as events)
from an underlying framework that provides a
structure that makes logical sense for the individual
applications.

The model depicted in Figure 1 provides for a
separation of the structure and events, extending
both as managed hierarchies and allowing for flow
control between the structures. The model borrows
heavily from the use of visual components to
provide application structure - this is a commonplace
analogy used in most modern Integrated
Development Environments (IDE) for the code
based generation of applications and from other
research works in meta modeling (Motik, Maedche,
2002), (Celms, Kalnins, Lace, 2003).

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

452

0..1

0..*
Sibling SE

0..1
Parent SE

0..*
Child SE

0..1
Parent Event

0..*
Child Event

0..1

0..*
Sibling Event

0..*
0..1

SE Fires Event

0..1
Event Fires SE

0..*

Structural Elements

Events

Figure 1. Structural Element - Event Molecule

Basic class diagram indicates a similar hierachical structure as described in the atomic model,
for the Structural Elements and Events, with the addition of the relationships between them

that will provide the logical basis of their mutual behaviour and interoperability.

4 META-DATA BASED

APPLICATION GENERATOR

We have proposed a prototype of a meta-data driven
system for the development of EIS systems that aids
the specification of the target application, followed
by the conversion of that specification into the
appropriate meta-data that will then be interpreted
by the runtime components. Figure 2 presents an
overview of meta-data based application
architecture.

4.1 Meta-Data Definer

The meta-data definitions effectively become the
application thus it is crucial that efficient methods of
defining the meta-data are available.

As the meta-data represents the output of the
system specification process then minimal
opportunities exist to expedite the original human
business analysis effort. However substantial
shortcuts will be offered by reductions in the system
design effort due to the amount of application
infrastructure that would necessarily be provided by
the runtime engine in support of the higher level
components that the meta-data syntax is modeled
upon. This automatic execution of platform
independent models to platform dependent execution
is a source of major savings in the development
cycle.

When starting a new application system design a
comprehensive design editor is a requirement for the
efficient specification and entry of the system
design. A custom editor is required that would
represent a suitable design paradigm which is
necessarily biased towards the production of the
target meta-data syntax.

The field of system analysis and design has

developed considerable expertise in providing CASE
toolsets to reduce the overall system development
effort, particularly the introduction of UML based
tools. Opportunities will become available to
develop utilities that import design models from
existing comprehensive third party design toolsets
and convert these designs into the corresponding
meta-data syntax.

The database is an integral component of EIS
systems which have a strong reliance on data
dictionaries and rules based database transactions.
Database schemas that do not obfuscate the original
design by abstracting the names or types of schema
elements, or by relocating database constraints or
stored procedures to a remote system tier have
significant potential as a starting point to the re-
engineering of an existing system.

The development of utilities to reverse engineer
existing database schemas and convert the schema to
the corresponding data dictionary meta-data can
accelerate the meta-data system design process
appreciably. Well formed database schemas (without
obfuscation) that seek to fully utilize the validation
options of the modern RDBMS (Relational Database
Management Systems) have the potential to reverse
engineer directly to a fully working meta-data based
application, requiring optimally minimal or no
modification to the meta-data.

META DATA FRAMEWORK FOR ENTERPRISE INFORMATION SYSTEMS SPECIFICATION - Aiming to reduce or
remove the development phase for EIS systems

453

 ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

454

4.2 Runtime Meta-Data Updater

The magnitude of the effort expended on future
system maintenance for systems represents by far
the majority effort for the lifecycle of systems from
the developer’s perspective.

Contributing causes to the ongoing high
maintenance costs continue to be the:
• lack of consistent and available system

documentation,
• inconsistently applied standards during different

(re)development phases,
• lack of structured programming techniques,
• extension of the system to provide features that

would have been better served by a full or
partial redevelopment,

• natural attrition of software development team
members knowledgeable of the system
architecture,

• natural progression of the underlying
technology to newer, richer and better supported
platforms.

The indicated high level maintenance figures of
80% and higher refers to the costs for the developers
of the system. For EIS systems this represents
person years of effort for the developer. The use of
meta-data based applications will drastically reduce
these costs to the developer and user base.

For the developer, meta-data applications will
largely be self documenting (except for the runtime
engine) which reduces the risk and reliance on
individual developers and development management
practices.

For the customers, meta-data applications are
provided as streams of structured meta-data. Unless
provided with an updated runtime engine (an
occasional requirement), the same runtime engine as
deployed to all users at a site would remain
unchanged (although this is a relatively simple
change management scenario to resolve). Changes to
a meta-data application are simply a new stream of
meta-data that represent only the specific application
changes. To progress to any later version of a meta-
data application requires only the application of the
correct sequence of progressive update version
meta-data streams.

4.3 Application Meta-Data

The ultimate aims of a meta-data model for EIS
systems definition include abstraction from the
physical constraints of any runtime components that
are used for the final implementation and execution
by the users.

Utilising a meta-data based interpretation of the
application specification allows applications to be
executed using any simultaneous combination of
platforms that are supported by the components of
the runtime engine, providing a progression towards
complete platform independence.

The visual structure meta-data is used to
construct the appearance of the application as
presented by the user interface runtime components
to the users. Visual structure meta-data is analogous
to the drag’n’drop forms functionality provided by
modern GUI based IDE software and will draw on
advances such as XForms (W3C, 2004), (Grimes,
2002).

The program flow meta-data is used to define the
user interface and local platform actions and
procedures that are executed in response to user
actions and other data changes. Program flow meta-
data is analogous to the event processing and general
programming functionality provided by modern GUI
based IDE and traditional programming languages.

The data dictionary meta-data is used to define
the requirements of the database schema and the
data changes required in response to user actions and
other data changes. Data dictionary meta-data is
analogous to the data dictionary role provided by
modern RDBMS systems.

4.4 Runtime Processor

The application meta-data must be interpreted and
executed for the users. This role is provided by
additional meta-data to map the generic application
meta-data to the interface requirements of the
platform specific components for execution, plus the
platform specific runtime engines that will perform
the execution.

5 RECAPITULATION AND
FUTURE WORKS

In this paper we proposed a development and
deployment of Enterprise Information Systems that
uses meta-data application definitions within a
framework of the OMG/MDA and the prototype of
the meta-data application generator that we believe
will reduce the complexity and costs at each phase
of the software life cycle. We also propose to
develop a meta-data standard for the definition of
EIS type systems that will be capable of extension in
the future to model a wider spectrum of application
types. We presented an overview of the essential
components of meta-data application generator
architecture.

META DATA FRAMEWORK FOR ENTERPRISE INFORMATION SYSTEMS SPECIFICATION - Aiming to reduce or
remove the development phase for EIS systems

455

Currently the prototype system incorporates
components of meta-data application architecture
including:
• a meta-data syntax for the structure of EIS

applications and the visual presentation of the
user interface,

• a meta-data syntax for the execution of
distributed events,

• a meta-data syntax for the data schemas of EIS
applications and conversion between third party
database schema types,

• runtime processing components suitable for
executing the EIS meta-data on a selected
platform subset.

We also note this perspective of the EIS software
life cycle could lead to many new concerns in the
next generation of software engineering:
• New cross platform components that can

broaden the accessibility of meta-data
applications,

• Extended meta-data definitions and
functionality for richer application types,

• Merging of meta-data applications to create
broader and deeper EIS applications,

• Development of more accessible design
toolsets.

REFERENCES

Sommerville, I. (2000). Software Engineering (6th
Edition), Addison-Wesley Pub Co.

IEEE (1998). IEEE Standards Collection Software
Engineering 1993, 1998 Ed, IEEE Inc.

IEEE (1997). IEEE Guide for Developing Software Life
Cycle Processes, IEEE Inc.

Pressman, R. (2001). Software Engineering: A
Practitioner's Approach, 5th Ed, McGraw-Hill Inc.

Martin, Robert H., Raffo, David (2000). A model of the
software development process using both continuous
and discrete models in Proceedings of Software
Process: Improvement and Practice, Volume 5,
Number 2-3, June-September 2000.

Donzelli, Paolo, Iazeolla, Giuseppe (2001). A hybrid
software process simulation model in Proceedings of
Software Process: Improvement and Practice, Volume
6, Number 2, June 2001.

OMG (2003). Introduction to OMG’s Unified Modeling
Language. Retrieved October, 10 2003 from
http://www.omg.org/gettingstarted/what_is_uml.htm.

Kruchten, Philippe (2000). The Rational Unified Process:
An Introduction, Addison-Wesley Pub Co.

Quatrani, Terry (2001). Introduction to the Unified
Modeling Language, Rational User Conference, 2001.

Lethbridge, Timothy, Laganiere, Robert (2002). Object-
Oriented Software Engineering: Practical Software
Development using UML and Java, McGraw-Hill.

Allegrini, Tiziana (2002). Code Generation Starting From
Statecharts Specified in UML. Universita Degli Studi
di Pisa.

Guizzardi, Giancarlo, Herre, Heinrich, Wagner, Gerd
(2002). Towards Ontological Foundations for UML
Conceptual Models in Proceedings of 1st International
Conference on Ontologies, Databases and
Applications of Semantics, 2002.

OMG (2003). OMG Model Driven Architecture – The
Architecture of Choice for a Changing World.
Retrieved October, 13 2003 from
http://www.omg.org/mda/executive_overview.htm.

Tolk, Andreas (2002). Avoiding Another Green Elephant –
A Proposal for the Next Generation HLA Based on the
Model Driven Architecture, 2002 Fall Simulation
Interoperability Workshop.

DARPA (2003). Why Use DAML ? Retrieved September
12, 2003 from
http://www.daml.org/2002/04/why.html.

W3C (2001). DAML+OIL (March 2001) Reference
Description. Retrieved September, 17 2003 from
http://www.w3.org/TR/daml+oil-reference.

Qasem, Abir (2001). A Prototype DAML+OIL Ontology
IDE, International Semantic Web Working
Symposium, Stanford, 2001.

van Harmelen, Frank, Horrocks, Ian (2000). Questions
and Answers on OIL: the Ontology Inference Layer
for the Semantic Web. IEEE Intelligent Systems,
Volume 15, Number 6, December 2000.

W3C (2004). OWL Web Ontology Language Reference.
Retrieved February, 10 2004 from
http://www.w3.org/TR/2004/REC-owl-ref-20040210/.

Kendall, Elisa F., Dutra, Mark E. (2002). An Introduction
and UML Profile for the Web Ontology Language
(OWL), Sandpiper Software Inc, 2002.

IBM (2003). Interface Definition Language (IDL).
Retrieved September, 25 2003 from http://www-
106.ibm.com/developerworks/websphere/WASInfoCe
nter/infocenter/wasee_content/corbaio/ref/rcidl.htm.

Motik, Boris, Maedche, Alexander, Volz, Raphael (2002).
A Conceptual Modeling Approach for Semantics-
Driven Enterprise Applications in Proceedings of 1st
International Conference on Ontologies, Databases
and Applications of Semantics, 2002.

Celms, Edgars, Kalnins, Audris, Lace, Lelde (2003).
Diagram Definition Facilities Based on Meta-Model
Mappings, The Third OOPSLA Workshop on Domain
Specific Modeling, 2003.

W3C (2004). Xforms – The Next Generation of Web
Forms. Retrieved February, 16 2004 from
http://www.w3.org/MarkUp/Forms/.

Grimes, Richard (2002). Developing Applications with
Visual Studio .NET, Addison-Wesley Pub Co.

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

456

