
AN EXCHANGE SERVICE FOR FINANCIAL MARKETS

Hairong Yu, Fethi A. Rabhi and Feras T. Dabous
School of Information Systems, Technology and Management,The University of New South Wales, Sydney 2052, Australia

Keywords: Information Systems Integration, Legacy Systems, Web services, Performance, Security, Trading Systems

Abstract: The critical business requirements and compelling nature of the competitive landscape are pushing
Information Technology systems away from the traditional centrally controlled corporate-wide architectures
towards dynamic, loosely coupled, self-defining and service-based solutions. Web services are regarded as a
key technology for addressing the need for connecting extended applications and providing standards and
flexibility for enterprise legacy systems integration. This paper reports our experiences when integrating a
financial market trading system. This integration process starts from analysing the trading system’s
architecture, then identifying system functionality and finally realising the design and implementation of a
Web service. Performance and security and the trade-offs involved are the major focus points throughout
this process. Comprehensive benchmarking is conducted with and without Web service and security
considerations.

1 INTRODUCTION

Information technology innovations such as
electronic communication networks have enormous
impact on the way people are doing business
nowadays. For example, the finance industry is
evolving rapidly as companies adapt new
technologies in order to survive in a highly
competitive and dynamic business environment. The
explosive growth in online trading systems that
operate from different locations worldwide is just
one example. However many mature, well
developed existing legacy trading systems do not
meet new business requirements. Their design
prevents them from interacting with other financial
systems in order to provide more services and
extend enterprise solutions. Developing applications
which try to supply best approaches to solve this
problem is becoming highest priority (Hendershott,
2003).

As interoperable trading systems are becoming
more common (Allen, 2001), this paper is concerned
with adapting centrally-controlled corporate-wide
legacy systems to satisfy these new requirements.
There are many challenges:
• Business Partner Integration: a centrally

controlled architecture hardly ensures complete,
expeditious and flexible integration between

systems including legacy systems when new
business partners are introduced or supply
chains cross a community are needed to be
chosen or outsourcing units are required to be
seamlessly connected.

• Service Accessibility: traditionally packaged
and tightly coupled systems cannot easily be
delivered as streams of services and accessed
pervasively from anywhere.

• System Development: slow software
development obstructs organizations' ability to
expose system functionalities for external use
on value added tasks or extend to new markets.

• Standardization: individual specifications and
standardizations are carried out without industry
agreements on data exchange, messaging,
interface description and business process layer.

New technologies such as Web Services are

pushed by many key IT vendors (IBM, Microsoft,
Hewlett-Packard, Oracle, Sun etc) and do not require
the adoption of a common implementation platform.
The technologies only require conformity to some
standard protocols and are extremely efficient for
leveraging existing applications and infrastructure.
Despite those promises (CBDI, 2003), there are not
many Web services currently operating in important
application domains, particularly financial trading.

403
Yu H., A. Rabhi F. and T. Dabous F. (2004).
AN EXCHANGE SERVICE FOR FINANCIAL MARKETS.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 403-410
DOI: 10.5220/0002626604030410
Copyright c© SciTePress

One of the impediments is that in addition to
integration difficulties, there are serious concerns
about meeting industry essential requirements in
performance and security.

To study the application of Web service
technology in financial trading, we are developing a
proof-of-concept prototype Web service called
Exchange Service (Exchange Service, 2003) while
addressing those critical requirements. The
Exchange Service is based on a full-fledged
commercial financial market trading system called
X-Stream (Computershare, 2003) which has been
developed for many years (Trading Technology,
2003).

This paper reports our experiences in developing
the Exchange Service. It is organised as follows:
section 2 gives background on trading systems and
their industry requirements. Section 3 illustrates the
Exchange Service design and implementation.
Experiments involving two focal points, namely
performance and security, are discussed in section 4.
Conclusions and future work are presented in section
5.

2 BACKGROUND AND
REQUIREMENTS

In this section, the application domain is briefly
introduced. Future directions and industry principal
requirements are also identified.

2.1 Financial Markets and Trading
Systems

A financial market’s purpose is to facilitate the
exchange of financial assets (Viney, 2000). A
trading system or a trading engine is a computerized
system used to trade financial products such as
equities, options, futures, currencies and
commodities in financial markets (Harris, 2002).
Business rules related to financial markets can be
supplied as parameters to the system, therefore
making it flexible and easily customised (Lee,
2002). An example of an in-house built trading
system is the Stock Exchange Automated Trading
System (SEATS) in Australian Stock Exchange
(SEATS, 2003)).

2.2 Future of Trading Systems in
Financial Markets

The internet has already changed the way many
investors trade financial products by bringing up-to-

date market information from Web and do-it-
yourself trading online. For example, international
brokers want to trade in multiple markets
simultaneously wherever they are; diversified
investors want to trade bundled portfolios. Trading
systems in the future will be required to offer
investors unprecedented convenience, choices and
security in accessing fast updating information in
order to make decisions in real time.

Traditionally and structurally, a trading system is
a core part in financial markets. Therefore it plays a
leading role in Business-to-Business (B2B) and e-
business/e-Commerce-to-Enterprise (e2B)
integrations. The development of an exchange
service to tie other services in financial markets
together becomes a compelling and urgent task for
many trading firms and whole enterprises.

2.3 Exchange Service Requirements

Many new technologies will play fundamental roles
to achieve those intentions and integrations in the
information-intensive financial market industry. For
an exchange service, there will be two leading
aspects in quality of service: performance and
security.

2.3.1 Performance Requirements

Trading engines are performance-critical systems
and performance has always been a main key to their
success. The transaction rates vary largely during
different periods of day or year, when new securities
are introduced. In some rare cases, it could go up to
more than 60,000 orders/sec. Given the possibly
large volumes of data in a short time and the need
for timely dissemination, integration between a real-
time trading system and other pre-trade and post-
trade processes is the most important requirement
in a financial market domain. In this case, the
connection of a trading system with other
applications should maintain an acceptable level of
efficiency, more precisely saying that around 10% of
performance degradation should be sufficient.

2.3.2 Security Requirements

Security is extremely critical in the finance industry
trading systems. Financial market information
infrastructure should especially provide the
following basic security features:
• Authentication and authorization. If an

exchange service receives an order from a
trader, it must be able to identify the trader and
his/her privileges. Likewise when the trader
receives any information from the exchange

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

404

service e.g. trade confirmation; the client side
systems should be able to determine that the
confirmation comes from the exchange service,
as a trusted service, not from other sources.

• Data integrity. Buy or sell messages sent from
investors to an exchange service travel through
multiple routers over the open/private network.
The system should make sure that orders are the
same as the ones the exchange service receives.

• Confidentiality. Many traders require strong
anonymity and high confidentiality. A
confidential financial data leak can cause
substantial damage to participants and ruin the
trading market reputation. The most popular
and effective approach to ensure confidentiality
on a public network is through encryption.

• Non-repudiation. When brokers submit orders,
they want to be assured that the exchange
service does receive an identical order and can
provide a proof to a third party to avoid disputes
in case the order does not “go through” for any
reason.

• Denial-of-service (DoS) attack prevention. A
DoS attack could jam financial services or their
communication channels with a huge amount of
bogus data to prevent the system/service from
responding to normal requests.

Other features like shill fraud prevention and

front-running prevention are addressed by some
more specific methodologies (Long et al., 2003).
Special security concerns may be raised on
integrated financial markets. For example, multiple
vendors who all have individual user authentication
and authorization should be controlled by single
sign-on schemes.

3 EXCHANGE SERVICE DESIGN
AND IMPLEMENTATION

We choose to design and implement our exchange
service according to the principles of Web Service
Architectures (Web Service, 2003). Technically
described, such architectures are based on loosely
coupled, self-defining and service-based software
components communicating in XML-based
messages over Internet standard protocols. More
specific definitions can be found at the World Wide
Web Consortium (W3C). Web services enable
enterprises to expose their internal applications on
the Web and make them accessible to business
partners and broader communities. Its introduction
in financial markets could facilitate inter-enterprise
business processes, such as automated straight-
through processing (STP).

 As mentioned in the introduction, the proposed
Exchange Service is based on a commercial trading
system call X-Stream. We briefly overview the X-
Stream system, before describing the design and
implementation of the Exchange Service,

3.1 Architecture of X-Stream

X-Stream is one of first generation exchange trading
systems that have been designed around a client-
server architecture (Trading Technology, 2003). It
has been used extensively as critical business
application for many years. It is a proprietary system
with a number of distinctive components such as:

• Trading engine: This is the essence of X-

Steam. It performs order management, trade
matching, reporting and circulation of market
and trading data. Relational databases
(Informix) are used to keep all necessary pre-
trade and post-trade related information. A rich
set of Application Program Interface (API)
functions are provided for client and server
application development.

• Backup trading engine: It serves as a standby
trading engine in the event of trading engine
failure, where it can be used as a primary
trading engine transparently.

• Distribution gateways: They provide
scalability, fault tolerance and market data
distribution to clients.

• Trader workplace: It provides a client
environment for brokers and users accessing
exchange market sensitive information and
submitting orders.

Built with Object-Oriented and relational

database design methodologies (Jessup, 2002), X-
Stream is highly configurable through Informix
database parameters and is re-configurable in real-
time via market control transaction. It is a huge,
comprehensive, closely-coupled and mature system
written in C++.

3.2 Overview of the Exchange Service

Our goal is to enable the integration of the trading
system, in a seamless way, with some current and
future applications, e.g. Web applications. We also
plan to allow the system to be used in trading over
the Internet, which becomes more and more popular
among investors and brokers.

The Exchange Service makes X-Stream more
visible and accessible for interaction with other

AN EXCHANGE SERVICE FOR FINANCIAL MARKETS

405

applications, and is not meant to be a replacement of
X-Stream.

The main advantage of using Web service
technology is that it does not require any
modification to the legacy systems. However its
integration is not a trivial task. It depends on internal
applications and business processes from various
back-end systems.

A very feasible method for integrating X-Stream
is based on an access wrapper. Figure 1 depicts the
Exchange Service stack reference architecture.

Figure 1: The layered architecture

Since X-Stream and its Client API are designed

in Object Oriented style, the Client Implementation
layer is drafted in the same fashion. The Exchange
Service can be invoked in Client-Server fashion. For
example a client process can place an order by
requesting the appropriate service from the
Exchange Service. More details are highlighted in
the next subsections.

3.3 Wrapper/Client Implementation

Because Java has facilitated several popular, easy-
use e-commerce enabling technologies, we first
considered developing a Java wrapper allowing Java
methods to invoke C++ codes by using the Java
Native Interface (JNI), a part of the Java 2 Platform,
Standard Edition (J2SE) (J2SE, 2003)

However, the overheads introduced by the Java
wrapper made the frequently used functions almost
five times slower than the original functions from X-
Stream performance. This is unsatisfactory for a real
time exchange service. We found that JNI related
operation is the main reason for unsatisfactory
performance. So we believe that we have to adapt a
C++ wrapper instead of Java wrapper for the
exchange service.

Web services are popular partially because of the
XML-based SOAP protocol, which brings a
powerful and versatile message exchange format. So
we choose a SOAP development environment,
gSOAP, to build a SOAP/XML web service.

gSOAP, an open source (gSOAP, 2003),
provides a platform-independent development
environment for deploying efficient SOAP/XML
Web services in C and C++. Also there are other
reasons for selecting it as a development tool
(Engelen, 2003):

• Rapid application development (RAD) by

automatic mapping XML-C++ and unique
SOAP-C/C++ binding:

• Efficiency, eg precompiled RPC stub and
skeleton routines quicken runtime encoding and
decoding; steaming technology.

• Low memory overheads, low SOAP RPC
latencies, easy control of memory allocation and
development for real-time system.

• Support for Secure Socket Layer (SSL).
• Ease of use, eg gSOAP SDK generates a WSDL

specification; client applications become an
extensively automated development.

The pre-compiled marshalling routines for native
C++ and user-defined data types enable the
integration of C++ legacy applications, in this case
X-Stream within SOAP services and clients.
Functions such as placeOrder, getQuote are exposed
as SOAP remote service methods.

The performance test results will be discussed in
section 4 and exhibit sufficient outcomes which are
compatible with performance of another component,
the surveillance service (Dabous et al., 2003), in our
financial market architecture.

3.4 Security

Although Web Services raise many security
challenges, they can also function as powerful and
flexible security tools. We investigated the
possibilities of providing security as a shared service
among our other services (Kong, 2002) and offer
security service as utilities. This could separate the
business functions of information service providers
from security service providers – and let users
choose and pay for the security service they need
(Long et al., 2003). The preliminary results show
significant benefits for cost control, maintainability,
interoperability, visibility and manageability.
However there are also disadvantages such as
multiple standards, support technologies and
possible bottlenecks with non-scalable solutions etc.
So we decided to concentrate on authentication and
data integrity by using digital signature and secure
communication in SSL. Because of limited space,
we only sketch our experience with SSL briefly.
 Web Services have no built-in security model.
More specifically, SOAP does not define vocabulary

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

406

elements to transport security references from
requesters to service providers and Web Services
Description Language (WSDL) does not define
elements to describe security capabilities and
requirements. Therefore we must add a security
protocol such as SSL (Freier, 1996) to meet the
security requirements. In general, we believe that
Public Key Infrastructure (PKI), for supporting
digital signatures and document encryption and
HTTPS/SSL, for secure point-to-point
communication with known trusted parties will
provide basic security for our application systems.
 We chose SSL because it is:

• The main protocol for Web security;
• Fairly mature with almost a decade of

improvements;
• Very widely implemented in many open source

development kits; and
• Easy to use and to be deployed.

 SSL is the current standard method of securing
Web transactions. However it involves essential
mathematical computations that take up CPU cycles
and becomes a major cause of performance
degradation. Some performance results will be
discussed in section 4.

3.5 Other Work

Besides the development of a secure Exchange
service, we have been working on three other
directions.

Firstly, X-Stream has no push communication
model, which means that brokers are not informed
automatically when their orders become trades in the
exchange system. Therefore we build a Peer-to-Peer
Web Service on top of the Exchange Service for
trade data disseminations. This will extend the
functionality of X-Stream by informing brokers
automatically.

Secondly, as gSOAP only supports request-
response messaging, we are investigating the use of
the Financial Information Exchange (FIX) protocol
whose session is defined as a “bi-directional stream
of ordered messages between two parties” (FIX
Protocol, 2001). This means that there are no
request-response semantics imposed by the
specification. The Exchange Service could choose
to apply a combination of one-way and notification
interaction patterns rather than use Remote
Procedure Call (RPC)-style communication in terms
of implementing trading data dissemination
scenario.

Thirdly, the Universal Description, Discovery
and Integration (UDDI) is basically a service

registry between the web service requestors and the
web service providers (UDDI, 2002). In our case,
the UDDI behaves as a locator of our Exchange
Service for clients to discover its IP, port numbers
WSDL-described services (WSDL, 2003).

Additional details on the Exchange Service
design and implementation can be found in (Yip and
Mok, 2003).

4 EXCHANGE SERVICE
EVALUATION

This section discusses performance and security
aspects of the proposed Exchange Service.

The first set of experiments addresses the
concerns of performance of Web services (Vaughan-
Nichols, 2002). The main reason is that XML is text-
based rather than binary-based like CORBA's
Internet Inter-ORB Protocol (IIOP), requiring more
data to process (Davis and Parashar, 2002). The
speed of coding and decoding and the message size
are negatively impacted (Chiu et al. 2002).

 We set up a performance testing environment
within a Local Area Network (LAN). All exchange
engines and gateways are supported by Dual Intel
Xeon 2.8GHz processors. We adopt the classical
methodology to test one of simplest functionalities:
placing orders like brokers do in real life. We choose
to submit one single order at a time only for the
computing processes1 in a few scenarios: one single
client and multiple clients (up to 16) and four
gateways to support load balancing.

The initial performance results (orders/sec) of
Exchange Service are shown in Table 1. The
performance overhead is generally defined as a ratio
of absolute performance difference over the
combined unit performance in percent. Take the
example of 1 client case in Table 1, its overhead is
(42.5-40.0)(orders/sec)/40.0(orders/sec) = 6.25%.

1 In reality, most trading engines process orders in batch
mode i.e. a group of order is processed at once.

AN EXCHANGE SERVICE FOR FINANCIAL MARKETS

407

Table 1: Preliminary performance results (orders/sec)
 Engine

without
Service

Engine
with

Service

Service
Overhead

1 client 42.5 40.0 6.25%

4 clients 153.11 146.02 4.86%

8 clients 166.7 149.5 11.51%

12 clients 180.0 164.11 9.68%

16 clients 190.0 180.6 5.20%

Because the additional Web Service

implementations increase memory usage during
SOAP message processing, overheads must be due
to SOAP messages that include numerous XML
elements. The next experiment attempts to improve
the performance and scalability of Web services
using chunked transfers, HTTP keep-alive support,
and increasing buffer size at both client and server
sides. However the improvements on performance
are not very significant. The results are depicted in
Table 2.

Table 2: Enhanced performance results (orders/sec)

 Engine
without
Service

Engine
with

Service

Service
Overhead

1 client 42.5 40.1 5.99%

4 clients 153.11 147.0 4.16%

8 clients 166.7 151.0 10.40%

12 clients 180.0 169.5 6.19%

16 clients 190 182.6 4.05%

Overall, the results show that the Exchange

Service has not much negative impact on the
performance of X-Stream.

Since security is another imperative but non-
functional requirement for trading systems, the next
experiment benchmarks the performance of a fully
SSL-protected Exchange Service.

The added security protocol SSL slows the
performance considerably. This is due to substantial
processing time taken on encryption and decryption.

Table 3: with SSL performance results (orders/sec)
 Service

without
SSL

Service
with
SSL

SSL
Overhead

1 client 42.5 5.6 658.93%

4 clients 153.11 6.5 2255.54%

8 clients 166.7 5.7 2824.56%

12 clients 180.0 5.85 2976.92%

16 clients 190.0 6.95 2633.81%

Table 3 shows of two orders of magnitude

performance decrease, which is consistent with
experiments conducted by another commercialising
company, e.g. Preact Ltd. (Preact, 2003). Some
improvements are recommended by Rescorla in
(Rescorla, 2001).

Obviously the results, e.g. around six times
slower in 1 client case, shown in Table 3 are
unacceptable in reality. Currently we’re considering
element-wise encryption (with SOAP messaging),
eg only sensitive parts should remain encrypted from
beginning to end or in a more general manner of
providing different levels of protection according to
specific requirements. It will considerably increase
the performance by reducing the noncompulsory
computation overheads.

The choice of a Web server with better tuning of
SSL transactions and cryptographic library on
algorithm, suite on balance between security and
performance all are significantly impact the speed
(HPSSLperf, 2002).

A detailed experiment description and analysis
can be found in (Yip and Mok, 2003).

5 CONCLUSION AND FUTURE
WORK

From our development experiences, we ascertain
that Web Services are suitable for dynamic
integration with high availability, open standard and
rapid engineering approaches.

The current Exchange Service intimately meets
the requirement of a trading system in performance.
A similar conclusion is drawn by (Kohlhoff and
Steele) in terms of SOAP efficiency only. We are
planning to continue our experiments with realistic
data to compare the results between X-Stream and
the Exchange Service. More work is required to
address and ensure that both privacy and security
can be preserved while customers, brokers, traders

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

408

and researchers access the financial information
easily, quickly and confidently.

In current financial market, a transaction can
bind concurrent related connections to multiple
parties and several layers of agents. For example, the
trading engine could simultaneously connect with
other brokers for placing orders, banks for
settlement or credit checking, financial institutes for
registry or market analysis etc. However SSL does
not support multiple-party communications very
well and cannot provide assurance of nonrepudiation
without a third-party server (Security Roadmap,
2002). We are researching and experimenting secure
XML protocols, e.g. XML Digital Signature (DSIG).
The XML Signature standard provides a means for
signing parts of XML documents. (XML Signature,
2003) and XML Encryption (XML Encryption,
2003) supported by W3C for efficient and secure
data communication to complement SSL.

The XML Encryption standard permits
encryption of portions of the message allowing
header and other information to be clear text while
leaving the sensitive contents encrypted to the
ultimate destination with true end-to-end
confidentiality. In web services environment, a
service provider may play the role as a service
requestor who sends information to multiple
services.

Another group lead by Pradeep Ray (Ray, 2003)
is collaborating with us on DoS attack prevention.
The DoS attacks, in distributed forms have to be
dealt with at the network management level.

Besides the security focus, in order to leverage
our existing web services and to achieve an efficient,
dynamic integration solution, a new approach of
user-centric, process-driven and real time oriented
service is designed and implemented in our lab. It is
called real time trade data service (Cheung and Wu,
2003).

Another component in our architecture is a
composite broker service for trading larger orders.
This includes searching existing databases,
generating trading plans based on output of analytics
services, placing the orders and receiving executing
results from trading service (Dabous and Lee, 2003).

There are some integration issues that must also
be addressed in order to tightly coordinate with other
organizations, individuals and working groups for
customer satisfaction, operational excellence and
legal requirements (Rabhi and Benatallah, 2002).
For instance, settlement, which happens after trade
completion, involves transferring funds between
buyers' and sellers' bank accounts, needs to be
promptly facilitated among different financial
institutes. Currently, STP occurs a few days later
after trading. The industry goal is T+0 (same day
settlement). We are targeting various information

technical solution options to explore and provide the
STP opportunity for Australian financial market
service sectors.

ACKNOWLEDGEMENT

We would like to sincerely acknowledge the
contribution of many people on this project. We
thank Stanley Yip, Joshua Mok, Chris Burgess,
Johan Fischer, Yun Ki Lee, Glen Tan, Robert Chu
Sunny Wu, Anthony Cheung, Rafal Konlanski and
Jamaria Kong, Anne-Laure Mazon. The work is
partially supported by Capital Markets Cooperative
Research Centre (CMCRC, 2003).

REFERENCES

Allen, H. et al., November 2001. Electronic trading and
its implications for financial systems.
At http://www.bis.org/publ/bispap07.htm

Capital Markets Cooperative Research Centre(CMCRC),
2002-2003. At http://www.cmcrc.com/

CBDI, 2003. At http://www.cbdiforum.com/index.php3
Cheung, A. and Wu, S., 2003. A Trade Data Service,

Thesis, the University of New South Wales.
Chiu, K. et al., 2002. SOAP for high performance

computing, Technical report, Indiana University. At
http://www.extreme.indiana.edu/xgws/papers/soapPerf
Paper/soapPerfPaper.pdf

Computershare, 2003. At http://www.computershare.com
Dabous, F. et al. 2003. Performance Issues in Integrating

a Capital Market Surveillance System using Web
Services. In proc. of 4th International Conference on
Web Information Systems Engineering, Roma, Italy,
Dec 2003

Dabous, F and Lee, Y., 2003. Web Services Composition
in Capital Market Systems, Technical report, the
University of New South Wales.

Davis, D. and Parashar, M., 2002. Latency performance of
SOAP implementations, in proceedings of the 2nd
IEEE/ACM International Symposium on Cluster
Computing and the Grid

Engelen, R. et al., 2003. Developing Web Services for C
and C++, IEEE Internet Computing, March|April 2003
pp53-61

Exchange Service, 2003.
 At http://129.94.244.61:8080/fit/prototypes.html/

FIX Protocol, 2001. The Financial Information Exchange
Protocol (FIX), version 4.3, At

 http://www.fixprotocol.org/specification/fix-43-pdf.zip

AN EXCHANGE SERVICE FOR FINANCIAL MARKETS

409

Freier, A. et al., 1996. The SSL Protocol, Version 3.0.
Internet Draft.
At http://wp.netscape.com/eng/ssl3/draft302.txt

gSOAP, 2003.
At http://www.cs.fsu.edu/~engelen/soap.html

Harris, L., 2002. Trading and Exchanges: Market
Microstructure for Practitioners. Oxford University
Press

Hendershott, R., 2003. Electronic Trading in Financial
Markets. In IT Pro, July|August 2003. ICCC
Computer Society.

HPSSLperf, 2002. Delivering the world’s fastest HP-UX
11i SSL performance with the Intel®Itanium®2
processor family, At http://www.hp.com/

Jessup, P., 2002. Product Overview for Computershare X-
Stream, Computershare Technology Services Pty Ltd.

Jessup, P., 2002. User Manual for Computershare ASTS,
Computershare Technology Services Pty Ltd.

J2SE, 2003. Java 2 Platform, Standard Edition (J2SE),
At http://java.sun.com/j2se/

Kohlhoff, C. and Steele, R., 2003, Evaluating SOAP for
High Performance Business Applications: Real-Time
Trading Systems, In proc. of The Twelfth International
World Wide Web Conference (WWW2003), Budapest,
Hungary, May, 2003

Kong, J., 2002. Security in Inter-domain Financial Market
System Integration, Thesis, the University of New
South Wales

Lee, Y., 2002. Design of Capital Market Systems, Thesis,
the University of New South Wales

Long, J. et al., July|August 2003. Securing a New Era of
Financial Services, IT Pro

Preact Ltd., 2003. SSL Performance,
 At

http://www.preactholdings.com/performance/products/j
etnexus/jet-nexus/SSL/

Rabhi, F. and Benatallah, B., 2002. An Integrated Service
Architecture for Managing Capital Market Systems,
IEEE network, 16(1)pp15-19

Ray, P., 2003, Integrated Management from E-Business
Perspective, International Kluwer Academic/ Plenum
Publishers

Rescorla, E., 2001. SSL and TLS: Designing and
 Building Secure Systems, Addison-Wesley.

SEATS, 2003.
At http://www.asx.com.au/markets/l4/seats_am4.shtm

Security Roadmap, 2002. Security in a Web Services
World: A Proposed Architecture and Roadmap – A
joint security whitepaper from IBM Corporation and
Microsoft Corporation. At
http://www-
106.ibm.com/developerworks/webservices/library/

 ws-secmap/

Trading Technology, 2002. Trading Technology Survey of
Exchange Technology 2002. At

http://www.tradingtechnology.com
[Accessed in August 2003]

UDDI, 2002. UDDI Version 3 Specification,
 At http://www.oasis-open.org/committees/uddi-
spec/doc/tcspecs.htm#uddiv3

Vaughan-Nicols, S., 2002. Web services: Beyond the
Hype, IEEE Computer, 35(2) pp18-21

Viney, C., 2000. McGrath’s Financial Institutions,
Instruments and Markets. McGraw Hill. Sydney. 3rd
edition

Web Service, 2003. Web Services Architecture, At
http://www.w3.org/TR/2003/WD-ws-arch-
20030808/#whatis

WSDL, 2003. Web Services Description Language
(WSDL) Version 1.2, At http://www.w3.org/TR/wsdl2/

XML Encryption, 2003. XML Encryption WG,
At http://www.w3.org/Encryption/2001/

XML Signature, 2003. XML Signature WG,
At http://www.w3.org/Signature/

Yip, S. and Mok, J., 2003. An Exchange Web Service,
Thesis, the University of New South Wales.

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

410

