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Abstract: A data warehouse (DW) provides information from external data sources for analytical processing, 
decision-making, and data mining tools. External data sources are autonomous, i.e. they change over time, 
independently of a DW. Therefore, the structure and content of a DW has to be periodically synchronized 
with its external data sources. This synchronization concerns DW data as well as schema. Concurrent work 
of synchronizing processes and user queries may result in various anomalies. In order to tackle this problem 
we propose to apply a multiversion data warehouse and an advanced transaction mechanism to a DW 
synchronization. 
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1 INTRODUCTION 

A data warehouse (DW) integrates autonomous and 
heterogeneous external data sources (EDSs) in order 
to provide the information for analytical processing, 
decision-making, and data mining tools. The 
operational data, produced by OLTP (On-Line 
Transaction Processing) applications are periodically 
loaded into a DW, previously being cleaned, 
integrated, and often summarized. Then the data are 
processed by OLAP (On-Line Analytical 
Processing) applications in order to discover trends, 
anomalies, patterns of behavior, to predict future, 
and support pertinent business decisions. The 
subjects of analysis are called facts and they are 
described by dimensions that set the context of facts. 

External data sources are autonomous, i.e. they 
change over time, independently of a DW. We 
distinguish three types of data source modifications, 
which imply changes in a DW, i.e. fact data changes, 
dimension data changes, and schema changes. Fact 
data changes represent modification of data, which 
are sources for facts in data warehouse. Dimension 
data changes represent modifications of data, which 
are sources for data warehouse dimensions. A 
content modification in the EDS, e.g., inserting a 
new record, may lead to a modification of a 
dimension structure in a DW. For instance, inserting 

a new product in an EDS may lead to modification 
of the structure of the Products dimension in a DW. 
So far the dimension information has been treated as 
static one. But in real life the changes to this kind of 
information are common. Schema changes represent 
changes to the schema of EDSs, e.g. adding an 
attribute to a table, dropping an attribute, adding a 
new table.  

As data sources change, warehouse data become 
obsolete and therefore, the structure and content of a 
DW have to be periodically refreshed. An efficient 
refreshing a DW under EDSs content changes is one 
of the basic problems in data warehouse research 
area. A DW needs to be informed when some 
changes appeared in EDSs data. This functionality is 
the most often provided by EDS wrapper, which 
observes data source state and sends notifications to 
a DW when changes take place. Having received 
such a notification, a DW may begin its refreshing 
process. 

Data in a DW are stored in materialized views, 
which are usually defined by SPJ (selection-
projection-join) query over tables in EDSs. There 
are two basic techniques of refreshing a materialized 
view, namely full refreshing and incremental 
refreshing. The first technique consists in re-
computing a materialized from scratch. Whereas an 
incremental refreshing consists in finding and 
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applying to a materialized view only these changes 
in source tables that appeared since the last refresh. 
However, the result of this process can be incorrect 
because of concurrent source tables updates. Many 
algorithms proposed so far try to solve this problem 
using wide range of mechanisms, e.g. (Zhuge, 
Garcia-Molina, Hammer, Widom 1995, Zhuge, 
Garcia-Molina, Wiener 1996). 

Another problem with a DW refreshing is caused 
by concurrent work of refreshing processes and 
users running analytical queries. Typical way of data 
analysis, performed by a DW user, consists of series 
of long-lasting, complicated queries, built with join, 
group-by, sort, and aggregate operations, reading 
large amounts of data. The problem is how to 
synchronize DW users' work with the process of 
refreshing a DW? Users' queries need to see a 
consistent state of data, but concurrent data 
warehouse refreshing can violate this requirement. 
The refreshing techniques proposed so far, called 
commonly on-line warehouse maintenance, use 
multiversion concurrency control algorithms (Quass, 
Widom, 1997). The limitation of these algorithms is 
that they do not support the mechanism of 
transaction with its atomicity, consistency, isolation, 
and durability properties. In a consequence, a DW 
user may see various data anomalies while a DW is 
being refreshed. The only algorithm for transactional 
DW refresh was proposed by (Chen, Chen, 
Rundensteiner 2000), however proposed solution 
does not cover all aspects of DW dynamics (for 
example dimension updates). 

1.1 Basic Definitions 

The most popular data model of DWs is based on 
multidimensional data cubes, where measures – the 
instances of facts, i.e. subjects of analysis, are 
described in terms of dimensions. Examples of 
measures include: number of items sold, income, 
turnover, etc. Typical examples of dimensions are 
Time, Geography, Products, etc. A value of a 
measure in n-dimensional cube is referenced by n-
dimensional vector, where each element corresponds 
to an element of a dimension. Dimensions are 
usually organized in hierarchies. An example of a 
hierarchical dimension is Geography, with 
Countries at the top, that are composed of Regions, 
that in turn are composed of Cities, i.e. Cities -> 
Regions -> Countries. A schema object in a 
hierarchy is called a level. Values in every level are 
called dimension members. 

Multidimensional cubes can be implemented 
either in MOLAP (multidimensional OLAP) or in 
ROLAP (relational OLAP) servers. In the former 
case, a cube is stored in multidimensional array. In 

the latter case, a cube is implemented as the set of 
relational tables, some of them represent 
dimensions, and are called dimension tables, while 
others store values of measures, and are called fact 
tables.  

In the rest of this paper, we will use the 
definitions of a DW schema and a DW instance. A 
schema of a DW is composed of the set of all 
dimensions, dimension levels, dimension members 
and facts. Whereas an instance of a DW consists of 
measures, i.e. cell values stored in fact tables. 

1.2 Motivating Examples 

Changes to the content and structure of EDSs, as 
well as concurrent work of user queries and 
refreshing processes may lead to serious DW 
anomalies. 

In order to illustrate these anomalies, let us 
assume the existence of three data sources: DS1 with 
table Categories (storing categories of products), 
DS2 with table Products (storing product 
descriptions), and DS3 with table Sales (storing 
records about sale of products). A DW integrates 
these three sources. Its schema is composed of two 
dimensions, namely Category and Time. The latter is 
organized hierarchically as follows: Month -> Day. 
Fact table Daily_Sales stores information about total 
sales of products in every day of a year. The 
Daily_Sales fact table is a materialized view, whose 
query joins records from Products at DS2 and Sales 
at DS3, and groups sale records by the category of 
product and the day of sale. Second materialized 
view, i.e. Monthly_Sales, aggregates daily sales in 
the Time dimension. 

 
Example 1 – incorrect refreshing a materialized 
view 

Let us assume that transaction T1 at data source 
DS2 inserts a new product "soap" of category 
"Hygiene" into table Product. The data source 
notifies a DW. In a consequence, the DW sends its 
maintenance query Q1 to DS3 in order to retrieve a 
delta, i.e. new sales for product "soap" from 
category "Hygiene". This delta will refresh 
materialized view Daily_Sales. During the transfer 
of Q1 to DS3, another transaction, T2 at DS3, inserts 
into table Sales a record describing the sale of 
product "soap". Next, T2 commits and notifies the 
DW. When Q1 arrives at DS3, it retrieves a record, 
which didn't exist when maintenance query Q1 was 
sent. The delta is sent back to the DW and it 
refreshes Daily_Sales. In a meantime, the DW 
receives notification from DS3, sends maintenance 
query Q2 to DS2 and receives the delta, which is the 
same record as the one retrieved by Q1. The 
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materialized view Daily_Sales will be refreshed 
twice with the same data, and its content will 
become incorrect. This situation is called duplication 
anomaly and occurs during concurrent data sources 
updates. Additional, overflow records that make 
materialized view incorrect are called an error term 
(Zhuge, Garcia-Molina, Hammer, Widom 1995, 
Zhuge, Garcia-Molina, Wiener 1996). 

 
Example 2 – inconsistent content of dependent 
materialized views 

Let us assume that a DW user begins its OLAP 
session for analyzing monthly sales of given 
categories (he/she queries the Monthly_Sales 
materialized view). During his/her work, some 
products were sold, so the Sales table at data source 
DS3 was updated. This change triggers refreshing 
the Daily_Sales fact table. As Monthly_Sales 
depends on Daily_Sales it should also be refreshed. 
If refreshing Daily_Sales and Monthly_Sales is not 
realized as a transaction, a user querying 
Monthly_Sales and drilling down to Daily_Sales will 
see inconsistent data (Zhuge, Garcia-Molina, Wiener 
1997). 

 
Example 3 – wrong interpretation of results 

Let us assume that the 1st March, 2003 category 
"Hygiene" was merged into category "Cosmetics". 
In a consequence, each product from table Products, 
which previously belonged to category "Hygiene", 
belongs to category "Cosmetics". Let us take a look 
at DW user's analysis. If a user retrieves information 
about monthly sales of products from category 
"Cosmetics" he/she will observe that in March the 
total sale of "Cosmetics" grows rapidly. A user can 
then draw wrong conclusions, not knowing that 
category "Hygiene" was merged into "Cosmetics". 
This problem was caused by data sources updates, 
which resulted in dimension change in a DW. 

 
Example 4 – refreshing under concurrent fact 
and dimension updates 

This example shows potential problems when 
concurrent fact and dimension updates occur. Let us 
review the following sequence of transactions at data 
sources. T1 at DS3 inserts a record about sale of 
product "soap" from category "Hygiene". Before T1 
commits, T2 at DS2 changes the category of "soap" 
from "Hygiene" to "Cosmetics". Next, T1 and T2 
commit. Then T3 at DS3 inserts sales of "soap"; this 
time "soap" belongs to "Cosmetics". Now the 
problem appears how a DW should be refreshed? 
Without a suitable concurrency control mechanism, 
all sales of "soap" will refresh the Daily_Sales for 
category "Cosmetics", which is incorrect since the 
sales, committed by T1, were for product of category 
"Hygiene". 

Example 5 – broken query 
A serious problem with refreshing a DW may 

appear if during the execution of transaction T1 at 
data source DS2 the schema change occurs at DS3 
(for example one attribute of table Sales is dropped). 
A maintenance query sent by a DW to DS3, as a 
reaction for notification received from DS2, can not 
be executed since it is incorrect because of a schema 
change at DS3. Refreshing process cannot be 
completed. DW schema has to be rebuilt in order to 
reflect schema changes at data sources.  

Observations. The examples presented above 
lead us to two following observations. Firstly, 
incorrect refreshing of a materialized view 
(Example 1) and inconsistent content of dependent 
materialized views (Example 2) anomalies are 
caused by the lack of transaction mechanism applied 
to DW refreshing. Moreover, in order to alleviate the 
incorrect refreshing of a materialized view anomaly, 
concurrent changes in EDSs have to be serialized. 
Secondly, wrong interpretation of results (Example 
3), refreshing under concurrent fact and dimension 
(Example 4), and broken query (Example 5) 
anomalies are caused by such changes in EDSs that 
have impact on a DW schema. In order to handle 
this kind and other kinds of schema changes, a DW 
has to: either (1) dynamically adapt its structure and 
transform existing data to a new structure, or (2) use 
versioning mechanism of schema and data, what we 
propose. 

1.3 Contribution 

Our approach to the problem of maintaining a DW 
under changes of schemas and contents of EDSs is 
based on explicit versioning the whole DW (i.e. 
schema and data) (reference removed for blind 
reviewing). Changes into a DW structure and data 
are reflected in a new, explicitly derived, version of 
a DW.  

Maintaining versions of the whole DW allows us 
on the one hand, to run queries that span multiple 
versions and compare various factors computed in 
those versions, and on the other hand, to create and 
manage alternative virtual business scenarios.  

Moreover, in order to assure consistent view of a 
DW for a user, while the DW is being refreshed, and 
to assure correctness of the whole DW refreshing 
process we propose two types of transactions (1) a 
fact transaction and (2) a schema and dimension 
structure transaction. A fact transaction is 
responsible for incremental refreshing DW fact 
tables to reflect updates of underlying EDSs' data. 
Whereas a schema and dimension transaction is 
applied to: (1) modifying a DW schema when EDSs' 
schemas change, and (2) to modifying a DW 
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dimension structures when EDSs' data reflected in 
dimensions change. 

 
Paper organization. The rest of this paper is 
organized as follows. Section 2 overviews related 
work in the area of DW maintenance under schema 
and data changes in EDSs. Section 3 briefly presents 
our concept a multiversion data warehouse. Section 
4 discusses our concept of transactions in a DW. 
Section 5 presents the metamodel of our 
multiversion data warehouse. Finally, Section 6 
concludes the paper. 

2 RELATED WORK 

The existing approaches to propagating changes 
from EDSs to a DW can be classified into two 
categories: (1) data refreshing and (2) handling 
changes in a DW schema. 

The solutions in the first category incrementally 
refresh DW fact table using different mechanism for 
avoiding duplication anomaly. The ECA algorithm 
(Zhuge, Garcia-Molina, Hammer, Widom, 1995), 
removes an error term by applying so called 
compensating queries. Two extensions of the basic 
ECA algorithm, namely ECAK and ECAL, are able to 
process some data source modifications locally at 
DW, i.e. without sending maintenance queries to 
EDSs. The same idea is used in the Sweep algorithm 
(Agrawal, El Abbadi, Singh, Yurek, 1997). Next 
solution, i.e. the Strobe algorithm (Zhuge, Garcia-
Molina, Wiener, 1996), stores the list of EDSs’ 
updates reported to DW during maintenance query 
execution. This list, called an action list, is used for 
compensating an error term. (Mostefaoui, Raynal, 
Roy, Agrawal, 2002) propose an architecture where 
EDSs form a ring. The process of finding delta 
caused by EDSs' updates is based on exchanging a 
token among EDSs. None of above solutions uses 
transactional refreshing a DW. In a consequence the 
atomicity and isolation of the refreshing process 
cannot be guaranteed. Moreover, the above 
approaches focus on only those changes in EDSs' 
data that do not have any impact on a DW schema. 

The only transactional solution to the problem 
of incremental DW refresh is, to the best of our 
knowledge, (Chen, Chen, Rundensteiner 2000). The 
authors propose a special purpose transaction, called 
DWMS_Transaction, which covers the whole 
process of a DW fact table refreshing. The 
DWMS_Transaction has been defined as a sequence 
of two transactions, namely local EDS update 
transaction and its corresponding DW maintenance 
transaction. The main contribution of the reported 
work is an observation that the anomaly during the 

process of incremental refreshing can be mapped 
into the problem of guaranteeing the serializability 
of DWMS_Transactions. The authors point out that 
DWMS_Transaction is rather conceptual than a real 
transaction mechanism, which is the potential 
solution's weakness. However, even such conceptual 
model of transaction allows to reformulate a 
maintenance anomaly problem to well-known "read 
dirty data" problem. The compensation techniques 
are no longer required. The solution also deals with 
schema changes, but does not tackle the problem of 
data warehouse dimension structure changes and 
concurrent DW users' sessions. 

The support for handling changes in a DW 
schema was studied in the two following categories: 
(1) schema and data evolution, (2) temporal and 
versioning extensions. The approaches in the first 
category (Koeller, 1998), (Blaschka, 1999), 
(Hurtado, 1999a), (Hurtado, 1999b) support only 
one DW schema and its instance. When a change is 
applied to a schema all data described by the schema 
must be converted, that incurs high maintenance 
costs. 

In the approaches from the second category, in 
(Eder, Koncilia, 2001), (Eder, Konicilia, Morzy, 
2002), (Chamoni, Stock, 1999), (Mendelzon, 
Vaisman, 2000) changes are time stamped in order 
to create temporal versions. However, the last two 
approaches expose their inability to express and 
process queries that span or compare several 
temporal versions of data. On the contrary, the 
model and prototype of a temporal DW presented in 
(Eder, Koncilia, 2001), (Eder, Koncilia, Morzy, 
2002) support queries for a particular temporal 
version of a DW or queries that span several 
versions. In the latter case, conversion functions 
must be applied, as data in temporal versions are 
virtual.  

In (Kang, Chung, 2002), (Kulkarni, Mohania, 
1999), (Quass, Widom, 1997), (Rundensteiner, 
Koeller, Zhang 2000) implicit versioning in a DW 
was proposed. In all of the four approaches, versions 
are used for avoiding conflicts and mutual locking 
between OLAP queries and transactions refreshing a 
DW. Versions are implicitly created and removed by 
the system, which is a drawback of these 
approaches. On the contrary, (Bellahsene, 1998) 
proposes permanent user defined versions of views 
in order to simulate changes in a DW schema. 
However, the approach supports only simple 
changes in source tables and it does not deal either 
with typical multidimensional schemas or evolution 
of facts or dimensions. Also (Body et al., 2002) 
supports permanent time stamped versions of data. 
The proposed mechanism, however, uses one central 
fact table for storing all versions of data. In a 
consequence, the set of schema changes that may be 
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applied to a DW is limited, and only changes of 
dimensions' structure are supported. 

3 MULTIVERSION DATA 
WAREHOUSE 

This section informally overviews our concept of a 
multiversion DW. Its formal description was 
presented in Morzy, Wrembel, 2003 (reference 
removed for blind reviewing). 

In order to be able to manage changes in a DW 
schema we developed the model of a DW with 
versioning capabilities. In our approach, changes to 
a schema may be applied to a new version of a DW. 
This version, called a child version, is derived from 
a previous version, called a parent version. Versions 
of a DW form a version derivation graph. Each node 
of this graph represents one version, whereas edges 
represent derived–from relationships between two 
consecutive versions. In our approach, a version 
derivation graph is a DAG. 

A multiversion data warehouse (MVDW) is 
composed of the set of its versions. Every version of 
a MVDW is in turn composed of a schema version 
and an instance version. The latter stores the set of 
data consistent with its schema version.  

In our approach we distinguish two following 
kinds of DW versions: real versions and alternative 
versions. A real version reflects changes in the real 
world. Real versions are created in order to keep up 
with the changes in a real business environment, like 
for example: changing organizational structure of a 
company, changing geographical borders of regions, 
creating and closing shops, changing prices/taxes of 
products. Real versions are linearly ordered by the 
time they are valid within.  

The purpose of maintaining alternative versions 
is twofold. Firstly, an alternative version is created 
from a real version in order to support the what-if 
analysis, i.e. it is used for simulation purposes. 
Several alternative versions may be created from the 
same real versions. Secondly, such a version is 
created in order to simulate changes in the structure 
of a DW schema. The purpose of such versions is 
mainly the optimization of a DW structure and 
system tuning. A DW administrator may create an 
alternative version that would have a simple star 
schema instead of an original snowflake schema, 
and then test the system performance using new data 
structures. 

Every version is valid within certain period of 
time. In order to check a version validity, every real 
and alternative DW version has associated, so called 
valid time, represented by two timestamps, i.e. begin 
valid time (BVT) and end valid time (EVT). 

4 TRANSACTION CONCEPT IN 
DATA WAREHOUSE 

In order to assure the correctness of a DW refreshing 
process we propose two types of transactions: (1) a 
fact transaction as well as (2) a schema and 
dimension transaction. 

4.1 Fact transaction 

A fact transaction is responsible for incrementally 
refreshing a DW fact tables. This transaction begins 
after updates at one of the EDSs were committed. 
The following problems may occur during the 
refreshing process: 
1. Computed delta may be wrong because of an 

incorrect refreshing a materialized view (cf. 
Example 1). 

2. The communication channels between EDSs and 
DW may fail during refreshing. As a result, a 
DW would not be able to finish its refreshing.  

3. If EDSs are extensively used, there may be 
started many refreshing processes. A DW should 
use some techniques to assure the proper 
execution of these concurrent processes. 

4. A refreshing process can conflict with a user 
analytical sessions.  
The problems mentioned above can be solved by 

applying to a refreshing process the mechanism of 
transaction. Our solution is based on the algorithm 
proposed in (Chen, Chen, Rundensteiner 2000) 
where the basic functionality of each EDS's wrapper 
is extended to support data versions generated by 
EDS's updates. Thus, maintenance queries are 
answered using appropriate data versions. This 
mechanism eliminates an incorrect refreshing a 
materialized view (the first problem). The wrapper 
can still answer the maintenance queries even if its 
data source is unavailable (the second problem). The 
proper execution of concurrent refreshing 
transactions should be arranged by transaction 
scheduler, serial or parallel (the third problem). The 
isolation of refreshing transactions and DW user 
sessions should be achieved by applying a 
multiversion concurrency control algorithm where 
user sessions read an "old" version of data while the 
"new" version is created at the moment by a 
refreshing transaction (the fourth problem). 

As an extension to the above algorithm we 
propose to introduce a parallelism inside the fact 
refreshing transaction. A delta construction process 
can be easily made parallel – many concurrent sub-
transactions inside a main transaction concurrently 
build separated parts of delta, then a process 
coordinator joins the partial results into a final delta. 
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However, this extension imposes advanced 
transaction models. 

4.2 Schema and dimension structure 
transaction 

A schema and dimension structure transaction is 
responsible for refreshing a DW schema and 
dimensions structures. The necessity to change a 
DW schema or/and dimension structures may be 
caused by two types of events: (1) changes at EDSs 
and (2) explicit changes made by DW users. 

In the first case either an EDS schema is changed 
(for example – an attribute is dropped from a table) 
or data updates, which are the sources for DW 
dimensions data, appeared. A DW is notified of 
these changes and starts a process to adapt its 
schema and/or dimension structure. In the second 
case a DW user (administrator) makes decision to 
change the schema or the dimension structure. In 
both cases the administrator decides if the changes 
are applied to the current DW version or are applied 
to a new version (a real or an alternative one).  

Each change to a DW schema and dimensions 
structure should also be reflected in the metadata 
describing the DW. 

Changes in a schema or dimension structure can 
also cause the transformations of fact table data, e.g. 
removing a specified dimension from DW schema. 
In a consequence, fact data have to be transformed 
to a new structure. 

We can now define the following steps of 
schema and dimension structure transaction. 
1. Creation of a new DW version, which depends 

on the administrator's decision. 
2. Application of schema and/or dimensions 

structure changes in the specified version of a 
DW (the current or a new one). 

3. Modification of DW metadata reflecting the 
changes. 

4. Transformation of fact table data. 
Some of the above steps can be made parallel, 

e.g. step 3 and 4. The implementation of operations 
within a given step can also be executed in parallel, 
e.g. modifications of separated dimensions, the 
transformations of fact table data. 

We argue that handling DW dynamics can not be 
based on the concept of standard OLTP transaction 
since:  
1. Standard transaction was designed for great 

number of very short user interactions with a 
database. A DW refreshing process and user 
queries are much longer than standard OLPT 

activities. Moreover, the concurrency control 
mechanisms of OLTP systems (for example 
locking the resources) are inappropriate for a 
DW since they reduce the degree of concurrency. 

2. Standard transaction has a flat structure – it 
cannot be divided into set of sub-transactions 
executed concurrently. 
For these reasons advanced transaction models 

should be applied in data warehouses. There are 
three such models (Barghouti, Kaiser 1994): (1) 
nested transactions, (2) multilevel transactions, and 
(3) sagas. A nested transaction is a composition of 
the set of subtransactions, each subtransaction can 
itself be a nested one. Only the top-level nested 
transaction is visible to other transactions and it 
appears as a normal atomic transaction. Sub-
transactions inside the top-level transaction are run 
concurrently and their actions should be 
synchronized by an internal concurrency control 
mechanism. A multilevel transaction has similar 
structure to a nested one, but it has predefined 
number of levels and different concurrency control 
mechanism can be used for each level. Saga is a 
multilevel transaction limited to only two levels. 
Partial results of subtransactions inside one saga are 
visible to other sagas. 

Another interesting solution is the possibility of 
dynamically restructuring running transactions 
(Barghouti, Kaiser 1994). This model allows 
changing the execution of transaction as the reaction 
for modification of user requirements, e.g. splitting 
one transaction into several new transactions or 
merging several transactions into a new one. 

5 METAMODEL OF 
MULTIVERSION DW 

The advanced models of transactions are currently 
implemented in our prototype multiversion DW 
management system.  

The metamodel of our MVDW is shown in 
Figure 1. The diagram presents data dictionary 
tables used for representing a multiversion schema 
of a DW as well as mappings between fact tables, 
dimension tables, and attributes in adjacent DW 
versions. The Versions table stores the information 
about existing DW versions. Every DW version is 
composed of fact tables (dictionary tables Facts and 
Versions_Facts) and dimensions (dictionary tables 
Dimensions and Dimensions_Versions).  
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Figure 1: The metamodel of MVDW 

 
Dimensions, in turn, have levels, represented by 

dictionary tables Levels and Dimension_Levels. The 
association between fact tables and dimensions is 
represented by table Dimensions_Facts. The 
Fact_Mappings data dictionary table is used for 
storing mappings between a given fact table in DW 
version Vi and the same fact table in version Vj, 
derived from Vi.  

Every fact and level table has the set of its 
attributes that are stored in Attributes. Every 
attribute may have integrity constraints defined 
(dictionary tables Constraints and Const_Attrs). 
Table Attr_Mappings is used for storing mappings 
between an attribute existing in DW version Vi and 
the same attribute in adjacent version Vj. The 
am_transf_method_forward is used for storing the 
name of a transformation program between 
continuous values of an attribute in a previous 
version Vi to values of this attribute in version Vj, 
derived from Vi. Backward transformation program 
name is stored in am_transf_method_backward. 
Transformation programs are implemented as 
procedures stored in a database. Discrete values of 
attributes are mapped in a separate table, whose 
name is pointed by map_tab_name. The schema of 
this mapping table is composed of three attributes: 

attr_id, attribute_value_from, and attribute_ 
value_to. The first one stores the identifier of an 
attribute whose value is mapped. An 
attribute_value_from stores the original value in 
version Vi, whereas attribute_value_to stores the 
value as required in version Vj. 

The Level_Mappings table represents mappings 
between levels in consecutive DW versions. 
Level_Inst_Mappings represents mappings between 
dimension members in case of structural changes in 
dimensions, for example, splitting a faculty, merging 
several shops into one, changing the name of a 
product. The meaning of lim_map_tab_name, 
lim_transf_method_forward, and lim_transf_ 
method_backward is the same as respective 
attributes am_map_tab_name, am_transf_method_ 
forward, and am_transf_method_backward of 
Attr_Mappings. 

The Transactions table stores the information 
about transactions used for creating new versions of 
a DW. Since a DW version may be committed or 
under derivation, Transactions store also the status 
of every DW version. 
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6 CONCLUSIONS 

In this paper we tackled the problem of 
synchronizing a DW content and schema with 
respect to changes in EDSs. We analyzed various 
anomalies that can appear in a DW during a 
refreshing process. These anomalies are the results 
of lacking transaction mechanisms in refreshing. 

In our approach, handling the changes in EDSs is 
done by means of: (1) DW versions and (2) 
advanced transaction mechanisms. Currently, we are 
implementing our concepts in a multiversion DW 
management system based, which is implemented in 
Java. Data and metadata are stored in an Oracle9i 
database. 

Future work will focus on: 
• comparing advanced transaction models (nested, 

multilevel, and saga) in a DW environment; 
• the analysis and development of inter– and intra–

version integrity constraints; 
• the development of a query language able to 

span, work on, and compare data from multiple 
versions of a data warehouse; 

• the development of new data structures for 
efficient storing and indexing multiversion data 
and their experimental evaluation. 
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