AN ALTERNATIVE APPROACH TO BUILDING
WEB-APPLICATIONS

Oleg Rostanin
University of Saarland, chair Siekmann
Stuhlsatzenhausweg, 3, D-66123 Saarbriicken, Germany

Keywords:

Abstract:

Web applications, Model-Controller-View, multi-client support, e-learning, XML, database

Nowadays in J2EE-world there is a lot of blueprints, articles and books that propose some recommendations,

recipes and patterns for producing web-applications in right way. There are also ready decisions like Jakarta
Struts or JavaServer Faces that can be taken as a base of a new project development. While developing the
DaMiT e-learning system we tried to collect, analyse and implement many of the architectural features being
proposed as well as to invent some new mechanisms such as supporting multiple kinds of client software or
introducing XML-based interfaces between application tiers.

1 INTRODUCTION

Data Mining Tutor (DaMiT) is an e-learning project
sponsored by the German Ministry of Education and
Research. The main objective of the project was to
create an adaptive e-learning system for teaching and
studying of Data Mining in German universities. Dur-
ing the project time it got clear that the system should
be developed as a general framework on which e-
learning systems in different scientific, educational or
industrial areas could be build. Such requirements
would imply a higher flexibility and extensibility level
of the system (extensible system of user roles, differ-
ent interface requirements etc. - see (Schulz-Briinken
et al., 2002; Grieser et al., 2003)).

On the other hand, at the beginning of the project
there was no strict requirements to the user inter-
face (layout, client implementation technology: html,
flash, applet or java application etc.) whereas the re-
quirements to the business logic and to the database
structures were formulated more definitively.

The next speciality of the project was distributed soft-
ware development because the project partners that
were responsible for development of the different sys-
tem parts (business logic, database procedures, flash
client, exercise engine, certification authority soft-
ware etc.) worked at least in 6 different German cities.
As a rule, the development process of different mod-
ules was not 100% synchronized because of lack of
human resources.

Rostanin O. (2004).
AN ALTERNATIVE APPROACH TO BUILDING WEB-APPLICATIONS.

In such circumstances of fuzzy requirements, poor re-
sources and relatively low communication possibili-
ties between developers, we made some engineering
and organisational decisions like:

e customizing the standard J2EE Model-View-
Controller implementation for:

— advanced navigation support;
— supporting multiple web client types;

¢ introducing xml interfaces between the application
layers;

in order not to waste humans work and to get at the
end a high quality product that could be extended,
adapted and configured according to the new require-
ments and application areas.

As a result of the project, we have got not only an
universal e-learning system framework that was used
only during the project lifetime for building 2 differ-
ent e-learning systems (DaMiT and IPAC), but also an
environment for creating large scalable web applica-
tions.

The main features of the DaMiT e-Learning System
one can find in (Jantke et al., 2004).

2 SYSTEM ARCHITECTURE

To meet our needs we had to choose such an architec-
ture that would allow us to make the main impact on

119

In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 119-124

DOI: 10.5220/0002637601190124
Copyright © SciTePress

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

the development of business logic of the application
that could be tested with the help of quick-and-dirty
html based interface. In such a case the layout could
be easily changed or completely replaced. In addition
to this, DaMiT was supposed to be a rather complex
system. This two facts speak for building the system
according to the MVC Model 2 pattern (Alur et al.,
2001).

Once having chosen a basic architecture one must de-
cide if it has a sense to use an existent implementation
like Jakarta Struts or to design and implement some
own framework that would be more powerful in some
way. In case of DaMiT we decided for the own im-
plementation that would be able to support new client
types (such as Flash, Java applications and applets),
provide the possibility of advanced navigation (redi-
rect to the certain page in dependency of some con-
dition etc.) and, last but not least, make the process
of web programming as easy as possible in order that
less qualified persons like students could participate
the development process.

2.1 Classical Model 2
implementation

The classical implementation scheme of MVC-
framework by the means of J2EE technologies is il-
lustrated by the fig. 1. An approximate algorithm of
work of such a system looks like following:

1. User clicks a link or submits an html form.

2. As aresponse to the user action, the browser sends
an http request to the servlet that was specified by
the href attribute of the anchor <a> html tag or
by the action attribute of the <form ..> html tag.
Every link or html form must always deliver some
special parameters such as command or action, as
well as session_id and some others. The names of
obligatory parameters and their quantity vary be-
tween different Model 2 implementations.

3. The servlet plays the role of a request controller. It
parses the http request, figures out the command to
be executed and finally runs the execute() method
of the corresponding command class.

4. The command class instantiates business-classes,
calls their business methods and finally calculates
some command dependent as well as obligatory
parameters. As an example of an obligatory pa-
rameter can serve the flag indicating whether the
command was successfully executed or not that al-
lows to make a decision if the system’s state must
be changed or the system must be returned to the
previous state.

5. After the command has been executed, the servlet
decides to which url it must redirect the request.

120

6. If the control was given to a jsp page - the page
reads data from the Session and the Request ob-
jects and displays them on the screen.

L=] [=]
|

|
|
Create]

HttpCall
N [

ommand Manager | | Session/Request Data |

getCommand Create!

command

execute

selValues

Am————

1 selRedrecti ¥,

getRedirectUr
1

redirectUr

Redirect

1
|
getValues |
1

session/request data

I
|
|
4
+
|
]

> Display Data
|

Figure 1: Sequence diagram of a MVC web application.

=
[N
I
|
|
I

2.2 Configuration of the Framework

Let us introduce the notion of MVC framework in-
stance. We will call framework instance a web sys-
tem that was created on a base of a certain MVC
framework. This could be Struts (Husted et al., 2002;
Cavaness, 2002), JavaServer Faces (Budi Kurniawan,
2003) or DaMiT frameworks to name a few.

The functionality of such framework instance is de-
fined by the set of so called actions or commands.
In addition to this, the system developer must define
all the possible system states (pages) as well as the
rules for the system state changing. In other words,
these rules determine the navigation paths in the sys-
tem. Let us call these state changing rules navigation
rules. Mathematically, navigation rules could be ex-
pressed by the formula 2.

q:f(c,’l“)

where ¢ € Q - the resulting system state (page) from the set Q of all the possible system
pages, ¢ € C' - the command, and 7 - the result of command execution.

The result 7 of the command execution can be calculated as follows:
r=f(eI,S)

where I - user input or command parameters, S the state of the user session.
Although, 7 is a variable, it can take values only from the finite set R of the possible

command results.

Formula 2: Navigation Rule

AN ALTERNATIVE APPROACH FOR BUILDING WEB-APPLICATIONS

Thus, to design a new system on a base of some
MVC framework, the system developer must define:

1. the sets Q of possible states (pages), C' of com-
mands, and R of command results;

2. dependencies of the type 2

Usually, these steps are done by filling in the cor-
responding xml structures that are specific to each
MVC framework. We use in the DaMiT framework
the structures shown in the listing 3.

< commands >

< facade>

<command name="process.login"
allowed-groups="0,1,3,4,5,6,7">

<display name="default" page="START.PAGE"/>
<display name="data-error" page="LOUT.INDEX_PAGE"/>
<command-class>LoginProcessCommand</command.class>

< /command>

</facade>

<pages>

<page name="START.PAGE" save="true">

<client name="html">
<adaptor>de.dfki.damit.servlet.HTMLAdaptor</adaptor>
<conf>StartPageHTMLAdaptor.cnf</conf>

</client>

<client name="java">
<adaptor>de.dfki.damit.servlet.JavaAdaptor</adaptor>
<conf>StartPageJavaAdaptor.cnf</conf>

</client>

</page>

Listing 3: DaMiT system configuration.

The tag <command> contains the description of
the command. The tag <command_class> defines
the java command class that will be instantiated
to process the request. The tag <display> defines
possible alternatives of the system state changing in
dependency of the command execution result.
Speaking in terms of our mathematical notation, the
list of tags <command> defines our sets C, () and R
as well as the dependency 2.

The main difference between our approach and
those proposed by Struts or JavaServer Faces is that
we define the system states (pages) abstractly and
does not tie them to the certain jsp page or some other
action. We call our states logical pages. Each logical
page is characterized by its name and the definite set
of attributes. We divide the attributes into two main
groups:

e session values (5) are computed and collected dur-
ing the session of user interaction with the system.

These values are stored in the Session object which
lives until the user logs out from the system.

e request values are computed during the current http
request and are disposed after the dialog step is fin-
ished.

The advantages of our approach are that:

e we can introduce some specific pages like RE-
TURN (see 2.3) that provides the system support
of the complex navigation paths;

e our system states are completely independent of the
visualisation technology. We define so called page
adaptors for each pair {page, client} so that sys-
tem states (pages) can be displayed correctly by
each of the supported client types - see 2.4.

2.3 Advanced Navigation Support

Such complex web systems as DaMiT contain much
functionality that should be easily accessible by the
user from his web interface. Otherwise the system
becomes unattractive or even unusable for the user.
The standard solution of this problem is to provide a
drop-down menu or tab control for accessing these
functions.

In the DaMiT project we chose a two-level tab con-
trol (the first level for dividing the functionality into
groups - modules, the second for accessing the func-
tionality itself - submodules). Our system has 5 main
standard modules as well as some dynamically gener-
ated modules:

e Study (contains references to all the learning re-
sources - courses, glossary, search etc.).

e User data (gives access to the user profile - chang-
ing identification data and learning preferences).

e Import (allows content provider to import/update
learning modules).

e Group management (allows administrator to insert
a user to a learning group, so defining user rights
for the learning content).

e Dynamical lesson modules (it is very convenient
for the user to open each new lesson as a new mod-
ule - so the learner has always a possibility to re-
turn to any previously visited lesson with only one
mouse click).

Although such organization of the user interface
makes the system comfortable, it bears the problem
of the module persistence. We can illustrate this prob-
lem, taking the DaMiT system as an example:

1. The DaMiT user is working with a certain lesson
(LD.

2. The user decides that he should read some material
from another lesson (L2) to understand the mate-
rial of the L1 and opens the new lesson as a new
module.

121

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

3. The problem is that when the user finishes reading
the L2 he should have a possibility to return to the
L1. Having returned to the L1, the user should be
on the same place in the L1 on which he leaved
it. In other words each module should be able to
restore its state.

One way to solve this problem is to invent some
module-specific approaches like to store the identifier
of the last displayed content for the lesson modules or
to regenerate the menu structure according to the state
of a certain module but these approaches are complex
and often not universal. We propose the following
decision:

e We describe a hierarchical application module
structure as an xml structure (see listing 4, instan-
tiate it in the application memory as a hierarchy of
java Module objects (see fig 5) and save in the Ses-
sion object.

e We introduce one more obligatory http parameter -
module into each http request so that the applica-
tion always knows in the context of which module
the current command is being executed.

e Each module stores the history of http calls (com-
mand call stack) that were executed within this
module during the user session, so that one can re-
turn to any of the module states.

e Each top level module knows the submodule that is
active at the moment.

e We introduce a command show_module as a part
of the application framework. This command re-
produces the state of the module using the module
call stack.

<modules>

<module name="DaMiT.LOGGED_IN"
allowed-groups="0,1,2,3,4,5,6,7">

<module name="STUDY" allowed-groups="1,2,3,4,5,6,7">
<module name="COURSES" allowed-groups="1,2,3,4,5,6,7"
default.command="goto.strt"/>

</module>

<module name="USER" allowed_groups="1,3,4,5,6,7">
<module name="PREFERENCES" allowed.groups="1,3,4,5,6,7"
default_command="udisplay&mode=pref"/>

</module></module></modules>

Listing 4: Application module structure.

Command call stack allows us to build in some
advanced navigation features into the framework.

Example1 Letthe command C1 display a universal
form for editing user data (page P3) and it could be
used for editing of both learning preferences (page

122

[[moer]

[pamit LoGaED our]

[pamit tocaED N]

Figure 5: Application module structure.

P1) and personal data (page P2) that belong to the
different system modules. After submitting the P3
the system saves the changed data into the database
and further has to decide where to return: to the page
P1 or to the page P2.

Example 2 Let the command C1 display a univer-
sal page for access to the payment system (page P3)
and it could be called practically from the every page
of the lesson module (for example from the pages
P1 and P2) if the lesson contains some information
that is available for some fee. After the payment
procedure was completed the system has to decide
which content to display - P1 or P2.

We can solve such problems by introducing the log-
ical page RETURN that makes the system to repeat
the last command saved in the module call stack (fig.
6). It is interesting to notice that in the Example 1
the user sees the same picture that he saw before call-
ing the editing form but in the case of the Example
2 the user sees the lesson content that was previously
hidden for him beyond the payment form.

[return]

Figure 6: Using RETURN logical page.

2.4 Extension of MVC Model 2

One of the problems of the standard Model 2 frame-
works is that it is complex to work with clients others
than web browser. These inconveniencies appear in
two places on the scheme 1:

AN ALTERNATIVE APPROACH FOR BUILDING WEB-APPLICATIONS

1. when the servlet parses the http request;
2. when the servlet makes redirect to a jsp page.

The first problem is that requests coming from dif-
ferent client types have different request format:

e Browser clients send parameters in the form of:
paraml=valuel ;

e Java/applet client sends usually instantiated serial-
ized objects via http-protocol;

e Flash client can send for example an xml structure
that has to be parsed with xml parser to get the in-
formation about the request parameter.

Our decision to this problem is to introduce the
HttpRequestFactory class that analyses the http
request and creates an instance of the HttpRequest
interface that corresponds to the client type. The
instances of HttpRequest interface provide all the
methods for accessing the initial request information.
Having introduced the HttpRequest interface, we can
be sure that the controller component may not care
about the initial request format and work uniformly
with HttpRequest instances.

Thus, to introduce a new supported client type, we
need only to create a new implementation of HttpRe-
quest interface and to teach the HttpRequestFactory
to recognize this new type of request.

The second problem is that different clients accept
different output formats:

e Browser client expects html code;

e Java/applet client expects to get an object from the
input stream;

e Flash client expects as a rule some xml structure
that contains all the output parameters.

To solve this problem, we introduce a notion of
client into description of our logical pages (see 2.1
and listing 3). We also extend our framework by
providing the adaptor classes for each client type.
Now each logical page can be properly configured
for the individual client (see the tag <conf>). The
structure of the adaptor configuration file is out of
scope of this paper.

Adaptor classes implement the PageAdaptor interface
and are called by the controller component after the
command was executed. The controller component
has to deal only with the instance of PageAdaptor
interface. The name of the adaptor class that will
be really instantiated is pointed by the <adaptor>
tag (listing 3). In the case of the START_PAGE the
HTMLAdaptor class will be launched in the case
of html client, and the JavaAdaptor class will be
launched in the case of java client. These specific
adaptors are able to display the system state in the
way required by the corresponding client type (for

example, the HTMLAdaptor makes redirect to the
certain jsp page whereas the JavaAdaptor constructs
a java object that contains all the necessary output
information and writes it into the ServletOutput-
Stream).

3 XML INTERFACES BETWEEN
THE APPLICATION LAYERS

One more speciality of the DaMiT-System implemen-
tation is that we use the xml structures as interfaces
between the application layers.

3.1 Application and Database Logic

The DaMiT system uses the database (IBM DB2
UDB) very intensively because all the data like user
profiles, learning objects and lessons’ structure are
stored in the database.

We separated strictly the database logic from the
application logic by having implemented it with
stored procedures to increase the performance of
database operations and not to mix Java und SQL
program code to get the system better structured and
easier portable between different databases.

We introduced also the following protocol between
Java code and stored procedure call:

1. input parameters of the stored procedure that are
simple separate values like numbers, strings are
given to the procedure in normal way;

2. input parameters that are lists of database identi-
fiers are given to the procedure as a comma sepa-
rated list of values;

3. output parameters that corresponds to one and only
one value are returned as they are;

4. output parameter that could produce multiple rows
(cursors) are returned as an xml-structure that is de-
fined for each parameter separately;

5. in the most stored procedures there is always one
output parameter that returns the xml-structure
containing logical errors that happened while ex-
ecuting the stored procedure.

We benefit from this approach at least in the fol-
lowing:

1. We can combine multiple procedure calls in one
larger procedure that returns multiple xml struc-
tures. This allows us to decreases the number of
database (JDBC) calls;

123

ICEIS 2004 - DATABASES AND INFORMATION SYSTEMS INTEGRATION

2. Some xml values returned from the database can be
directly given to the application view modules that
can make XSLT transformations with these values
and display them;

3. We give the application logic developer a possibil-
ity to work independently from the database devel-
oper: if the stored procedure is not written the busi-
ness logic developer can use dummy xml structures
as if they were received from the database.

3.2 Model and View

As our view component deals mostly with displaying
xml structures it has sense to use xml interfaces be-
tween the model and the view components as well. It
means that if our business logic generates some data
(instead of getting them directly from the database,
like dynamically changing menu etc.) it should gen-
erate xml structures that could be easily displayed.
Like in the case with the database logic such xml in-
terfaces allow us to make the view modules develop-
ment independent from the application logic develop-
ment.

4 CONCLUSION

4.1 Summarizing

In this paper we show some achievements of the
DaMiT Project in the area of the web applications
building. The methods and approaches being de-
scribed can be extended and used to construct differ-
ent internet sites. The main results of the research and
constructive work in this area are adaptation and ex-
tension of the standard J2EE Model-View-Controller
implementation in:

e advanced navigation support by introducing the no-
tion of module and providing a command calling
stack for each module that allows to restore the
state of module;

e supporting multiple web client types by introduc-
ing the notion of logical page;

e providing xml interfaces between the application
layers that allows to develop the application layers
independent from each other.

4.2 Future work

The world of the web technologies is changing very
quickly. Recently Sun Microsystems has proposed its
own standards for design and implementation of the
web applications (JavaServer Faces). The standard

124

tools and libraries are getting more and more com-
fortable for the developer. Therefore, one of the main
directions of the future work is to adapt the solutions
found during the DaMiT project for using them within
the JavaServer Faces framework.

Another important direction is to proceed the research
in the area of web based applications formalisation
and to integrate further navigation schemes (Thalheim
and Diisterhoft, 2001).

4.3 Acknowledgements

The author of this paper is grateful to the follow-
ing scientists for given support and advices: Bernd
Tschiedel (Technical university in Cottbus, Ger-
many), Dr. Steffen Lange and Prof. Klaus P. Jan-
tke (both German Research Center of Artificial Intel-
ligence, Germany).

REFERENCES

Alur, D., Crupi, J., and Malks, D. (2001). Core J2EE Pat-
terns: Best Practices and Design Strategies. Prentice
Hall.

Budi Kurniawan, N. M. (2003). JavaServer Faces Program-
ming. McGraw-Hill Osborne Media.

Cavaness, C. (2002). Programming Jakarta Struts. O‘Reilly
and Associates.

Grieser, G., Lange, S., and Memmel, M. (2003). DaMiT:
Ein adaptives Tutorsystem fiir Data Mining. In Jan-
tke, K. P., Wittig, W. S., and Herrmann, J., edi-
tors, Von e-Learning bis e-Payment. Das Internet als
sicherer Marktplatz, Leipzig, Germany, September
24-26, Tagungsband LITO3. Akademische Verlagsge-
sellschaft Aka.

Husted, T., Dumoulin, C., Franciscus, G., Winterfeldt,
D., and McClanahan, C. R. (2002). Struts in Ac-
tion: Building Web Applications with the Leading
Java Framework. Manning Publications Company.

Jantke, K. P., Lange, S., Grieser, G., Grigoriev, P., Thal-
heim, B., and Tschiedel, B. (2004). LEARNING BY
DOING AND LEARNING WHEN DOING: Dove-
tailing E-Learning and Decision Support with a Data
Mining Tutor. In This conference proceedings.

Schulz-Briinken, B., Herrmann, K., and Grimm, R.
(2002). Kundenrollen als Vermarktungskonzept im
e-Learning. In Klaus P. Jantke, Wolfgang S. Wit-
tig, J. H., editor, Von e-Learning bis e-Payment. Das
Internet als sicherer Marktplatz, Leipzig, Germany,
September 24-26, Tagungsband LITO2. Akademische
Verlagsgesellschaft Aka.

Thalheim, B. and Diisterhoft, A. (2001). SiteLang: Concep-
tual Modeling of Internet. In SitesConceptual Model-
ing - ER 2001, 20th International Conference on Con-
ceptual Modeling, Yokohama, Japan, November 27-
30, Proceedings, volume 2224. Springer.

