
SEMI-AUTOMATED SOFTWARE INTEGRATION
An approach based on logical inference

Mikhail Kazakov
Research Division, Open CASCADE S.A., 4, rue Rene Razel, 91400 Saclay, France

Habib Abdulrab
PSI laboratory, INSA de Rouen, BP8, place Emile Blondel, 76131 Mont Saint Aignan, France

Keywords: Enterprise integration, formal specification, logical inference, description logics

Abstract: The paper addresses a problem of semi-automated enterprise application integration. More close we discuss
a problem of integration of numerical simulation components in the area of manufacturing engineering
information systems. We propose an approach that is based on annotation of software interfaces with formal
logical specifications. Logical inference procedure is used to choose appropriate enterprise software
component depending on client requests. First, we discuss the problem and difficulties of integration of
numerical simulation solvers and manufacturing engineering solutions in general. This is followed by
description of the methodology of semi-automated integration based on use of description logics.

1 INTRODUCTION

Nowadays, software integration is one of the most
important and complex areas of software
engineering. The complexity of integration problem
can be explicitly seen in the domain of enterprise
information systems where many legacy software
exist, new systems occur, existing systems shall be
integrated together. Recently, the domain of
integration of manufacturing engineering
components raised new challenges:
• Complexity of software algorithms leads to

presence of legacy software.
• Most of the times the exact specification and

behavioral model of engineering software are
known only by domain experts and are hidden
from developers who have only the external
description of API (or a protocol) of the
systems. This leads to semantic mistakes during
creation of connectors among software entities,
consequently increasing the time and cost of
integration process.

• Specifications of APIs and protocols come often
in a form where many specific abbreviations are
used and interfaces are not designed according
to the best practices of software engineering.

Historically, manufacturing engineering domain
is very inertial. It accepts new software technologies
with significant impedance. However, the market
forces manufacturing engineering area to adopt
common enterprise application integration (EAI)
practices such as message-oriented middleware,
shared application servers, distributed transactions
with formal data verification and many others.

Following this demand, the EAI area needs to
research and adopt new techniques that will help to
cope with above-mentioned challenges and reduce
integration time and cost. This is especially
important now, when enterprise integration market is
moving towards Web Services technology.

Analysis of the above-mentioned challenges of
enterprise integration of manufacturing systems
shows that one of the biggest problems is presence
of a big amount of possible components and a big
amount of domain terms and semantics that are
known to domain experts but:
• are not always known by architects/developers
• have multiple different data representations in

different systems
• can look very similar but mean different thing

for domain experts.

527
Kazakov M. and Abdulrab H. (2004).
SEMI-AUTOMATED SOFTWARE INTEGRATION - An approach based on logical inference.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 527-530
DOI: 10.5220/0002638005270530
Copyright c© SciTePress

Integration of numerical simulation solvers poses
even more difficulties:
• Specifications of solvers are understandable

only by someone with background in thermal
physics.

• Same terms of thermal analysis can mean
different things among different solvers
(example: Maximum of temperature).

• Data needed by one of the solvers is missing
• Each solver has many different parameters.

Solvers have interfaces implemented with
different technologies.

We can continue this list of difficulties; however,
it is clear that automated support in partial mapping
among enterprise components would be appreciated.
 This paper sketches a new methodology of semi-
automated integration of engineering components.
The methodology is based on formal specification of
software components using logical languages.
Inference procedure obtains a partial mapping
among software components with consequent
generation of connector code. The mapping is
proposed to a person (integrator) that shall validate
and complete the integration process. We describe a
software prototype that implements the
methodology.

2 SEMI-AUTOMATED
INTEGRATION

We argue that separation of integration information
onto three following layers is useful:
• Domain knowledge – specification of real-

world semantics. Example: A thermal solver has
to accept heat conductivity of material as one of
its parameters. This information is almost not
present in the information systems and this is
one of the biggest obstacles for automation of
integration process.

• Specification of interfaces – semantics of mean
of access to a specific component. Example:
“ISolver” is an interface with “Calculate”
method.

• Technological information – technology-
specific data that conforms to specification of a
technology and defines the way of physical
interoperation with the technology.

This separation seems to be evident; however,
the division is extremely important for semi-
automated approach. Specificity of information that
is used on one of the levels is usually not needed on
others (EJB technology itself does not need to care
about details of physics and physics does not need to

know its implementation details). Thus, we can
separate means that we use to work with information
of each level. Adding the domain knowledge as an
equal knowledge component is extremely important
for semantic-aware integration.

In order to specify all the above-mentioned
information types we proposed to use formal logical
specifications. The use of logics for specification of
computation-independent models is very reasonable
due to the high level of abstractions of such models
and their direction towards description of structure
rather than behavior. Hereinafter we use the term
“ontology” to refer to a formal logical model.

SHIQ description logic (Baader, 2003) is used as
formal logical representation mechanism. SHIQ
logic has proven to be decidable, has at least two
working implementations and is widely accepted by
the Semantic Web community. DAML+OIL and its
successor – OWL are the XML-based formats for
persistent representation of ontologies.

Ontological specifications are separated onto
several layers according information layers:
• Domain ontology – a logical specification of

application domain.
• Interface ontology – logical specification of

application programming interfaces (APIs).
• Technological ontology – this layer abstracts

software components from operating system
and mediates the components over distributed
environment.

In addition, we specify a mediation ontology – a
specification of how reasoning, querying and
binding among ontologies is done within our
methodology.

The domain ontologies are created by domain
experts. It is supposed, that domain ontologies are
not just the terminological taxonomies (hierarchical
listing of terms), but are as complete as possible
logical model. That assure that new knowledge can
be inferred by a logical reasoner and integration can
be performed even in non-evident cases.

Interface ontologies consist of three parts. The
first part (IO1) is constant and specifies common
notions of software interfaces (APIs), such as
method, call, parameter, argument, return value,
interface, etc. This part is very close semantically to
the UML representation of the same information.

The second part of interface ontology (IO2) is
generated automatically from definitions of APIs of
concrete components that need to be integrated. It
follows semantics of APIs (expressed in some
language, for example IDL, Java, etc.). APIs are
expressed in terms of the first part of interface
ontology.

The third part of the interface ontology (IO3)
represents a binding among interface and domain

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

528

ontologies. The binding is manually created by
domain experts and software engineers. On this step,
a connection among interfaces and their real-world
semantics is done. For example, the following
axioms can be defined: “Thermal_solver” concept
from IO2 is subsumed by a “thermal solver” concept
from domain ontology; the “Thermal_solver”
concept is in relation of “represented by” with
“thermal solver”; etc. These propositions define how
specific concepts and relations from interface
ontologies are related to specific concepts and
relations from domain ontology. As one can guess,
the success of reasoning depends a lot on
completeness of this binding.

Specification of technological ontologies is
possible without using of logical languages.
Research results in auto-configuration environments
that can be reused instead. In the current prototype,
we avoid using technological ontologies due to high
complexity of ontological models. Configuration
parameters are pre-defined for research purposes.

Mediation ontologies consist of three parts. The
first part (MO1) is static and contains semantics that
are needed for successful reasoning and integration.
The main goal of this ontology is to specify how a
“client query” can bound to “service answer” and to
specify how to achieve this binding via inference on
interface, domain and technological ontologies. In
addition, this part contains axioms needed to assure
the structural validity of static parts of other
ontologies (first parts of interface and technological
ontologies) by constraining them and introducing the
checks of axioms that shall never be false in a
correct model, but always be false in incorrect
models.

The second part of the mediation ontology
(MO2) plays the same role as a third part of
interface ontology but is specific to clients (a part
that performs calls to services) and shall be written
manually while specifying client request to call a
service. A domain expert shall connect the concepts
and relations of domain ontology with concepts and
relations of the first part of the mediation ontology
and to the first part of interface ontology.

The third part of mediation ontology (MO3) is
generated automatically and represents information
from other ontologies in terms of the MO1. For
example, it generates axioms that will be used to
infer the possibility of binding of a client to a service
for each pair of client and server methods. Details on
this part are not present in this paper due to
problems with size.

A set of four ontologies shall be created for each
component of enterprise system to be integrated
(depending on its role to be client or service, a
second part of mediation ontology may be used or
not).

We propose the following scenario of semi-
automated integration using our methodology:
• Ontology editor prototype is used to create all

the manual parts of ontologies and connect them
with static parts

• Integration prototype (hereinafter mentioned as
“integrator”) is used to annotate these manual
parts to specific software interfaces

• The integrator is used to generate the automated
parts of interface and technological ontologies
from the interfaces

• Then the integrator takes all the manual and
static parts of above-mentioned ontologies for
each component to be integrated and merge
them together. On this step we receive an
common ontology that represents the
specification of a set of enterprise components
to be integrated

• Addition of missing parts of interface and
technological ontologies is performed in order
to have a binding among ontologies

• The structural and logical verification of this set
is performed by a theorem prover

• Then a third part of mediation ontology is
generated in order to create binding among
client and server roles within the system

• Reasoning is performed to find possible
mapping among client and server parts

• The result of such reasoning is analysed in order
to receive names of interfaces, methods, and
configuration parameters to be integrated

• This information is converted back to
integration software that generates connectors
among different systems.

Communication among clients and servers can
be performed in two principal modes: context-free
(or context-less) and context-aware (context-full). In
the context-free mode, no client-specific information
is kept between two consequent communication
sessions among clients and server. In the context-
free mode, even if the state of server exists and
changes, this change is not important and does not
influence the future client-server communication. In
context-full mode, the client server communication
may depend on change of state of the server and/or
presence of the context of the communication
session.

Our logic-based semi-automated integration
methodology is intended to integrate context-free
software components. In this case, we presume that
client requests to components will not depend on
components themselves. It is important, since semi-
automated client-to-service binding mechanism may
easily return two different servers for two

SEMI-AUTOMATED SOFTWARE INTEGRATION: AN APPROACH BASED ON LOGICAL INFERENCE

529

consequent client calls. It is necessary to be sure,
that the second call will not depend on the first one.

The requirement for having context-less
enterprise components is well suited for Web
Services paradigm since this technology is service
based (request – response model).

The software support of the methodology
consists of two prototypes: DL-workbench and DL-
Integrator.

DL-workbench is a meta-model based platform
for definition and edition of data structures that has
default user interface for ontological manipulation.
On the bottom level of the platform, one can find a
metadata description language (meta-model) with
meta-data repository. The meta-model can define
structures of ontological language, interfaces
representations, data mappings and other structural
formalisms. Data that is managed by the platform is
driven and constrained by structural models that are
defined via meta-modeling language.

The DL-workbench is an open source software
product that can be downloaded from the
http://www.opencascade.org/dl-workbench web site
(DL-workbench, 2003).

DL-integrator is a software prototype that
implements the integration process of the proposed
methodology. The DL-integrator is based on the DL-
workbench architecture. DL-integrator specifies
supplementary models for representing the WSDL
interfaces and several other data formats that are
specific to textual interfaces of numerical simulation
solvers. The use of the same meta-model repository
allows easy and manageable implementation of
associations among ontologies and interface
information. Details on the methodology and
software prototypes can be found in (Kazakov,
2002) and (Kazakov, 2003).

3 RELATED WORKS AND
CONCLUSION

Several research projects exist in the area of semi-
automated or automated integration. NIST MEL
laboratory (Ray, 1999) project has been conducting
since 1999 and has 10 years goal of feasibility proof
of use of automated methods in manufacturing
engineering enterprise networks. This project comes
also to the conclusion that semi-automated
approaches are feasible. NIST focuses mostly on use
of Express language. By the year 2003, NIST did not
start working on problem of integration of numerical
simulation solutions yet.

The semi-automated composition approach for
Web Services is described in (Sirin, 2003). The
authors present a mechanism of reasoning on top of

specifications of Web Services using DAML-S
language. While having the impression of similarity,
our approach is very different. The authors do not
separate ontologies on several layers and do not
provide any generic mechanism to bind the code.
Separation of ontologies on interface and domain
parts gives us high level of control over the
complexity of numerical simulation solutions.
DAML+S orientation provides service-based view
on components that does not fit our goal of
integration of interfaces where more complex
scenarios shall be implemented.

In this paper, we have presented our
methodology of semi-automated integration of
stateless software components. By creating of this
methodology, we have proven feasibility of use of
the methodology by prototyping. The approach can
be applied to integration of context-free components.

Following our methodology, the domain experts
can specify scientific and engineering components
with domain semantics on a high level. Software
architects can reuse these specifications to integrate
software components. The methodology opens up
perspectives for dynamic composition of software
components.

Authors hope that after some time, the semi-
automated and automated enterprise integration
techniques will be widely used by EAI domain.

REFERENCES

Baader F, et all. 2003. The description logics handbook:
Theory, implementation and applications, Cambridge
Unviersity Press, ISBN: 0521781760.

DL-workbench., 2003. Project web site.
Online: http://www.opencascade.org/dl-workbench

Kazakov M., Abdulrab H., Babkin E., 2002, Intelligent
integration of distributed components: Ontology
Fusion approach, In proceedings of CIMCA 2003
conference, pp 611-622, ISBN 1-740-88069-2

Kazakov, M., Abdulrab H., 2002, On semantic-enhanced
middleware, INSA de Rouen, Internal report
[KAZ,02e]

Kazakov M., Abdulrab H., 2003, A meta-modeling
approach to ontological engineering: DL-workbench
platform, In proceedings to MIS 2003 conference,
Springer-Verlag

Ray S., 1999. The Future of Software Integration: Self-
integrating Systems, NIST MEL report

Sirin E., Hendler J., Parsia B., 2003, Semi-automatic
Composition of Web Services using Semantic
Descriptions. In proceedings of “Web Services:
Modeling, Architecture and Infrastructure" workshop
in conjunction with ICEIS2003

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

530

http://www.opencascade.org/dl-workbench

