A DYNAMIC AGGREGATION MECHANISM FOR AGENT-BASED
SERVICES

Makram Bouzid
Jérdme Picault
David Bonnefoy

Motorola Labs
Parc les Algorithmes - Saint-Aubin, 91193 Gif-sur-Yvette, France

Keywords:

Abstract:

Dynamic Service Aggregation, Agents, Multi-agent Systems, Constraint Satisfaction.

At a time when the web is switching from a data-oriented view to a service-oriented view, we can envision

an environment where services are dynamically and automatically combined to solve new problems that one
single service cannot solve. Agent technology provides a good basis for creating such an environment but
many issues remain to be solved. This paper presents a step towards a dynamic service aggregation mecha-
nism, introducing a pragmatic approach and an implementation. This work was carried out in the context of

the Agentcities.RTD project.

1 INTRODUCTION

The web is switching from a data-oriented view to a
service-oriented view, through initiatives such as the
Semantic Web (W3C, 2001a) or the Web Services
(Mc Ilraith et al., 2001).

Pushing this vision further, we can envision a revo-
lutionary way of accessing Internet services. The re-
sult of a service should seamlessly derive from users’
wishes rather than from users’ skills. The ultimate
step is to break the limitations of existing Web ser-
vices, to enable them to combine themselves in order
to solve new problems that one single service cannot
solve. Intelligent agents represent a promising tech-
nology to face these challenges, since they enable to
hide much of the complexity of accessing Web ser-
vices, while bringing additional value by customizing
and composing the services.

A fully dynamic service aggregation mechanism
would provide a lot of benefits:

e New services, potentially unanticipated during de-
sign time, can be constructed to address a specific
problem, on demand of the system or its users;

o A relatively large number of services can be con-
structed from a set of basic service components;

e The human involvement can be minimized, as well
as the system disruptions to perform upgrades and
addition of new functionality.

This paper presents a first step towards such a dy-
namic service aggregation. This work was conducted

10

Bouzid M., Picault J. and Bonnefoy D. (2004).

A DYNAMIC AGGREGATION MECHANISM FOR AGENT-BASED SERVICES.

in the context of the Agentcities project, and carried
out in the same spirit: working both at the theoretical
and practical levels. A first prototype of the system
described here was implemented.

The paper is organized as follows. Part 2 describes
the context of this work and defines more precisely
what we mean by dynamic service aggregation. Part 3
gives an overview of our aggregation mechanism and
a detailed description as well. In part 4 a first appli-
cation of this mechanism, called Evening Organizer,
is presented. We finally conclude with some future
directions of that work.

2 CONTEXT

2.1 Agentcities

The Agentcities project (Agentcities, 2003) is de-
veloping a foundation for the vision of an ambi-
ent proactive environment where heterogeneous, au-
tonomous and increasingly intelligent systems repre-
senting businesses, services and individuals are able
to interact with each other and enable dynamic com-
position of services. Agentcities is creating a realistic,
decentralized and open environment based on agent
technology, which will enable high-level semantic in-
teroperability between systems and build knowledge
and understanding of dynamic open environments for
eventual transition to usage in reliable commercial

In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 10-15

DOI: 10.5220/0002638900100015
Copyright © SciTePress

A DYNAMIC AGGREGATION MECHANISM FOR AGENT-BASED SERVICES

Theatre Service _ Cinema Service

V) -
E I would like an
evening organised
Transpon Service with a restaurant and
some entertainment X
1 /—\

Evening Organizer

/ \\\4 (9
!;
Restaurant Service

Restaurant Reviews

Figure 1: EO service aggregation

grade systems. Agentcities goes beyond Web Ser-
vices by taking advantage of the interaction models,
formal languages characteristics of agent technology.
Platforms and services in the environment are pub-
licly accessible and form a public resource for the
testing, deployment and usage of dynamic services.
One of the demonstration scenarios of Agentcities
is an Evening Organizer (EO), which is an agent en-
tity that enables dynamic composition of entertain-
ment services such as cinemas, restaurants, etc. and
integration with business services (Figure 1).

2.2 Service Aggregation and
Composition

In the domain of services, many activities (research
and standardization) aims at providing solutions for
the description of services, the interoperability of ser-
vices and the automation of their invocation and ag-
gregation. We may distinguish three levels of ambi-
tion in those works.

The first level provides collaborating services with
knowledge of their specification and interaction de-
tails at design-time. Web services with XML-based
languages such as UDDI (UDDI, 2001) (repository
of businesses) and WSDL (W3C, 2001b) (Web Ser-
vice Description Language) represent those types of
services. Service invocation and interoperability are
possible by exchange of SOAP messages (Box et al.,
2000). The specifications of such exchanges are de-
tailed in the WSDL description of the service. How-
ever a computable part must still be hand-coded. A
complex service can be described through WSFL
(Web Service Workflow Language) (IBM, 2001) by a
composition of primitive services. This description is
made by hand and there is for the moment no propo-
sition to perform dynamic service aggregation.

The second level provides collaborating services
with knowledge of their specification details at
design-time, but their interactions are defined at run-
time. Those services are principally represented by
agent services, which have flexible communication

capabilities, but there are some non-agent proposals
at this level, allowing a kind of dynamic composition
of services. For example, the SWORD toolkit (Pon-
nekanti and Fox, 2002) allows doing such dynamic
composition based on a combination of service inputs
and outputs of elementary and final services as the
principal constraints.

The third level provides collaborating services with
knowledge of their specification and interaction de-
tails only at run-time. This is the highest level and the
most interesting one, but the more complex to obtain
as well.

While the terms aggregation and composition are
usually used indifferently, we would like to make a
distinction. Service composition is reserved for the
case when services are chained one after the other,
each service using as input the output of the previous
service, as in a mathematical composition. Service
aggregation is the general case when one service is
built from several other services, though there may
or may not be direct interaction between the different
services. Services are combined into a new, compos-
ite service.

2.3 Scope of the work

In our work, we focused on service aggregation as de-
scribed above, positioning our architecture between
the second and third levels of automation. Indeed, ser-
vices interactions are provided at run-time but in ad-
dition their specifications are also discovered at run-
time (e.g. looking at a repository).

We have made some simplifying assumptions. We
suppose the environment is composed of a large num-
ber of services, several potentially being interchange-
able. The services that are aggregated do not interact
with each other directly, even if what is found for a
particular service may influence the choice of another
service. In addition, the aggregation mechanism is
centralized: though the “execution” of the new com-
pound service is distributed.

3 DYNAMIC AGGREGATION
ARCHITECTURE

3.1 General considerations

The aggregation of agent services can be seen as
a kind of distributed problem solving and planning,
which necessitates communication, negotiation, and
planning capabilities between agents to aggregate a
service, as well as coordination abilities for its later
execution. Several models for distributed problem
solving through agents have been proposed in the lit-

11

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

erature, using either centralised or distributed plan-
ning methods for distributed or centralised plans gen-
eration (Weiss, 1999). But the proposed models are
either too theoretical to be completely and success-
fully implemented, or implementation-oriented, like
those proposed for cooperative robots, and cannot
easily be generalised to be applied for agent ser-
vices aggregation. HP proposed a framework called
DySCo, consisting in a service model and a reference
infrastructure for system implementation (Piccinelli
and Mokrushin, 2001). This framework allows dy-
namic aggregation of e-services (not agent-based ser-
vices), using the concept of service incompleteness,
in terms of implementation, and multiparty orchestra-
tion.

We decided to adopt a more pragmatic approach,
keeping the notion of service aggregation as a kind of
planning problem.

3.2 Overview of the aggregation
process

In our model, an aggregated service is represented by
a plan that at first will be partial and non-instantiated,
and gradually refined until a complete and instantiated
plan is obtained.

Our approach is similar to the one described by
Wooldridge and Jennings in (Wooldridge and Jen-
nings, 1999) for cooperative problem solving, in
terms of process stages, but we focus here on the ream
formation and plan formation phases.

At a high level view, our aggregation mechanism is
thus composed of the following five stages:

1. Understanding the definition of the new service and
design of its structure. According to the taxonomy
of services, their policies and the interrelationships
among them, this definition may be useful to limit
the scope of the services needed, or to build the new
service skeleton. This will allow building e.g. a
parallel structure for an emergency service that in-
teracts with firemen and police services at the same
time and a sequential structure for a succession of
entertainment services;

2. Creation of a partial and non-instantiated plan (i.e.
a skeleton) that is expected to solve the problem.
This plan is built from the user’s requirements and
the definition of the new service;

3. Finding the types of services that will compose the
final service; this requires some reasoning capabil-
ities;

4. Finding and selecting the associated service
providers, i.e. agents delivering the services, ac-
cording to pre-defined constraints and policies;

5. Finding the right combination of service instances,
supplied by service providers, allowing to build a

12

() restaurant () entertainment ()

(input-time nodel 19:00) (input-time node2 22:00)

(input-location nodel “rue
Paul Fort™)

Figure 2: Non-instantiated plan

complete and coherent plan while respecting all the
user constraints. This is a constraint satisfaction
problem, which we can solve by using constraint
programming techniques, such those proposed in
the artificial intelligence (AI) or operational re-
search (OR) domains. The algorithms should be
chosen according to the application type and do-
main, and depending on the user request, we can
either return all the solutions or the optimal one(s).

Our aggregation mechanism is dynamic since:

e Searching the agents offering a given service is per-
formed on the fly;

e Some services may be dynamically inferred and in-
serted to a plan instance by the aggregating entity
(i.e. a special service performed by an agent) with-
out being asked for by the user;

e New services and new types of services can be
added dynamically too without interrupting the ex-
istent system.

We detail in the following section the five steps of our
aggregation mechanism.

3.3 Aggregation process details

The first step consists in reasoning about the user re-
quested compound service. This service will consist
in a set of elementary services. This set is currently
provided by the service requester (i.e. a person, an-
other service or an agent).

The second step concerns the partial plan creation
that we will describe in details in the following sec-
tion given its importance to the aggregation process.

Plan Description

A plan is an ordered set of event resource ob-
jects that are restricted by appropriate constraints on
their properties and the interrelationships among such
properties. A plan is represented by a precedence
graph. If we refer to the evening organizer (EO) ex-
ample, a plan will contain the services the user will
use during an evening (Figure 2).

According to (Blum and Furst, 1997), a plan-
ning graph allows explicitly encoding all the planning
problem constraints, reducing the amount of search
needs, and permitting to construct plans quickly. We
adopted a similar representation of plans using a
graph for aggregated services. It allows encoding the

A DYNAMIC AGGREGATION MECHANISM FOR AGENT-BASED SERVICES

planning constraints and backtracking too, but plans
are managed in a slightly different manner.

Each node represents the user state at a given
moment during the execution of the aggregated
service, e.g. in the EO before and after having a
dinner states. These states are represented by a set of
constraints. Each edge is labelled with an event. An
event represents a type and/or an instance of a service
resource (e.g. “Restaurant”, “Entertainment”). A
hierarchy between the different kinds of services
needs to be defined (e.g. ”Cinema” and “Theatre” are
“Entertainment”). In the EO example, we can define
events of type hotel, dinner, walking, taking the bus,
etc. Events provoke some changes into the user’s
state, e.g. changes in the location, the time, etc. We
also attribute to each edge (event) a set of constraints
representing user preferences.

Representation of constraints
As defined in (Rajpathak et al., 2001), we define a
hierarchy between the constraints:

e Hard constraints cannot be violated under any cir-
cumstances;

o Soft constraints can be relaxed if necessary in order
to reach the final schedule.

All these constraints are expressed using first-order
logic expressions. A constraint will be expressed
by a predicate. In the EO example (Figure 2), user
state level constraints relate to the time and to the ad-
dress: (input-time <node> <value>) and
(input-location <node> <value>).

The predicates should refer to a specific node in
order to ease the detection of inconsistencies. A
weight can be attributed to each constraint in order to
express the degree of preference to the realisation of
the condition, encoding the hard and soft constraints.
Moreover, rules between these predicates can be
defined according to the kind of service that is used.
All the constraints will be used for checking the plan
coherence and possibly resolve conflicts.

Resolution of the plan

This section details the second main part of the
aggregation process, which corresponds to the res-
olution phase of the previous plan. This means that
the non-instantiated plan has to be instantiated and
verified according to the results provided by services.

From event to service types

In the third step, the aggregating entity should in-
fer service types from events, by looking in the de-
fined services hierarchy. For example, in the EO, we
can use a mechanism that enables us to know that a
restaurant event is the result of information given by
a restaurant finder service, and that an entertainment
could be the result of a film or play finder service.

@ restaurant ‘/2\ entertainment @

(input-time nodel 19:00)
(input-location nodel “rue
Paul Fort™)

(input-time node2 22:00)

Restaurant Finder Service (RF) Film F.inder Serv.ice (FF)
Play Finder Service (PF)

Figure 3: Selection of service providers

This mechanism can be a simple lookup table, or a
more complex inferencing.

The fourth step will be divided into two sub-steps:
Selection of a service provider and querying elemen-
tary service providers.

Selection of a service provider

Once the service type has been identified, providers
of this service type, i.e. agents delivering this kind of
service, should be selected among the possible can-
didates. The aggregating entity starts by searching in
the DF (yellow pages service) the registered services.
A pre-selection among different providers might be
done thanks to some properties of the service descrip-
tion of agents registered within the DF (Figure 3).

If the aggregating agent finds no provider for
a given service type, several possibilities may be
considered: the plan can be rejected; or the plan
can be revised: the user may be asked to review his
choices, or the event for which there is no available
service provider can even be removed from the
original plan.

Querying elementary service providers

For each type of service that is selected, the
constraint processor generates a query or a request
that the service can understand, compliant with
the constraints of the user (e.g. for the restaurant
event, the constraints processor may generate a query
including the type of cuisine and the facilities). This
query is sent to the agent that returns the possible
results (service instances such as a particular restau-
rant, a particular route, etc.) to the aggregating entity
(Figure 4). Again, if no result is found at this sub-step
for a given service type, the plan can be rejected or
revised according to pre-defined rules.

Instantiated plan

This is the last step of the aggregation process.
When getting back the results from the service agents,
the aggregating entity will construct a set of graphs
representing potential solutions. The coherence of
these graphs has to be checked; only correct graphs

13

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

@ restaurant ‘/2\ entertainment (=2
i\

(input-time nodel 19:00)
(input-location nodel “rue
Paul Fort”)

(input-time node2 22:00)

Constraints
processor

Film Finder Service

Play Fifffr Service

Restaurant Finder Service

Query/Request

08
O O
o OOResults

Figure 4: Retrieving results from service components

@ restaurant

(inpur-time nodel 19:00)
(input-Iocation nodel “rue
Paul Fort”)

/2\ entertainment @
&

(input-time node? 22:00)

. instantiation
New constraints

(input-location nodea “rue (input-time nodeb 21:00)
Lecourbe™)

@M,@ restaurant ,()Jm_,@ >
O instancel

(inpus-time nodel 19:00) (input-time node?2 22:00)
(input-location node] “rue
Paul Fort”)

Figure 5: Instantiation of the plan

are kept. As mentioned in the aggregation process
overview, according to the application domain and
type we can use the right algorithm (from AI or OR
domains) to return the first solution, all the possible
solutions, or the optimal one(s). We call the obtained
plans (if any) instantiated plans. A graph that may
correspond to an instantiated plan is built from the
abstract plan as follows:

e For each edge, two additional nodes are inserted
with empty transitions (edges), in order to help in
finding conflicts between planning constraints and
in resolving these conflicts. Conflicts can arise
from having different values for a given param-
eter (e.g. different locations for two successive
nodes linked by an empty transition). These new
nodes (Figure 5) may contain new constraints that
are introduced because of the service instance re-
sults (e.g. a new input address, additional time con-
straints, etc.).

e If there is no conflict among the constraints be-
tween two nodes related by an empty edge, the two
nodes are merged (see Figure 6, right part). Other-
wise, we try to infer from this conflict the kind of
event that could solve this issue, e.g. a transport can
be added between a restaurant and a cinema located
far from each other (see Figure 6, left part). If no
event solving the issue is found, the plan should be
rejected or revised. A rule-based engine, initiated
by the designer, enriched from user interactions and
by learning mechanisms, could perform the infer-
ence of the kind of event solving a conflict.

14

(input-location nodea “rue (input-time nodeb 21:00)
Lecourbe”)

a restaurant Q 1 a
Qinstancel

(input-time node2 22:00)

\—'—1

C N

@—
(input-time nodel 19:00)

(input-location nodel “rue
Paul Fort”)

(input-location nodea “rue
Lecourbe™)

@ transport restaurant Q
Qiinstancel
(input-time nodel 19:00) (input-time nodb’ 22:00) or

gnplu;;loc«:t)ion nodel “rue (input-time nodeb’ 21:00)
aul Fort

Figure 6: Detection and resolution of potential conflicts

Selection of a service instance

We should notice that the detection of conflicts is
very difficult: constraints are represented by predi-
cates and the potential conflicts can be detected using
a theorem prover (like JTP (Frank, 1999)). The most
difficult part of the aggregating entity resides in the
level of intelligence the conflict solver is able to have.
For example, in the EO case, if the user wants to go
to a restaurant and then to a theatre, the evening orga-
nizer should not propose a transport if the two events
are located in the same area.

4 EVENING ORGANIZER
EXPERIENCE

This section presents a first application of our ag-
gregation mechanism developed in the context of the
Agentcities project.

A protoype of the aggregation architecture de-
scribed above has been implemented, using the JADE
(JADE, 1999; LEAP, 2001) agent platform. A JTP
(Frank, 1999) engine provides some reasoning ca-
pabilities to our agents and a KIF support (Gene-
sereth and Fikes, 1994) to exchange messages be-
tween them. This allows also agents to manipulate
ontologies expressed in DAML+OIL (DAML+OIL,
2001), which have been written within the Agentci-
ties project.

Our evening organizer agent interacts with a num-
ber of services (restaurants, route guidance, cinemas,
hotels...) which allow to plan a complete evening.
The interactions between the Evening Organizer and
the services are quite simple, nonetheless we have im-
plemented some basic negotiation schemes for select-
ing the most appropriate service. A simple Personal
Agent acts as an interface between the user and the
Evening Organizer. The evening plan is progressively

A DYNAMIC AGGREGATION MECHANISM FOR AGENT-BASED SERVICES

refined through interactions between the Evening Or-
ganizer and the Personal Agent, under the supervision
of the user.

Currently, the taxonomy of services is poor, so
the link between the event and the service type is
static. We also used only basic reasoning capabilities
to solve conflicts, but we will conceive and develop a
more powerful reasoner for future versions. We tried
some examples with this first prototype, and we ob-
tained quite good results (like inferring and inserting
a non-requested service to the proposed plan for user,
e.g. atransport service for solving a location conflict).

5 CONCLUSION

In this paper, we have shown some steps towards a dy-
namic aggregation of agent-based services and a con-
crete achievement through the implementation of our
Evening Organizer prototype.

During the development and experimental usage of
the Evening Organizer architecture we have obtained
valuable experience and a number of insights related
to dynamic service aggregation. Nevertheless, our
prototype shows that some issues remain. Thus, sev-
eral areas requires further work:

e We currently rely on a very basic taxonomy of ser-
vices for finding the relevant ones. We are investi-
gating using DAML-S (DAML-S, 2002) for a more
advanced service description, which would allow to
have better reasoning capabilities;

e Improvements of the planning algorithms to choose
the optimal or right aggregated services for the
user, by keeping track of failed aggregation, for ex-
ample, and reduce then their complexity;

e Improvements in the interactions between the
Evening Organizer and the services.

While some of these improvements are only relevant
to our implementation, others require some standard-
isation and agreement between researchers and de-
velopers involved in agent-based services design (ser-
vices, user representatives, etc.)

ACKNOWLEDGEMENTS

The research described in this paper is partly sup-
ported by the EC project Agentcities.RTD (IST-2000-
28385). The opinions expressed in this paper are
those of the authors and are not necessarily those of
the EU Agentcities.RTD partners.

REFERENCES

Agentcities (2003). http://www.agentcities.org.

Blum, A. L. and Furst, M. L. (1997). Fast planning
through planning graph analysis. Artificial Intelli-
gence, 90:281-300.

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A.,
Mendelsohn, N., Nielsen, H. F., Thatte, S., and Winer,
D. (2000). Simple Object Access Protocol (SOAP)
1.1. http://www.w3.0rg/TR/SOAP.

DAML-S (2002). DAML-S
http://daml.org/services.

DAML+OIL (2001).
http://www.daml.org.

Frank, G. (1999). A General Interface for Interaction of
Special-Purpose Reasoners within a Modular Reason-
ing System. In Question Answering Systems, AAAI
Symposium, pages 57-62.

Genesereth, M. R. and Fikes, R. E. (1994). Kif version
3.0 reference manual. Technical Report Logic Group
Technical Report Logic-92-1.

IBM (2001).
sion 1.0.

Version 0.7.

DAML+OIL Specification.

Web Services Flow Language Ver-
Technical Report, http://www-

4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf.

JADE (1999). Java Agent Development Framework.
http://jade.tilab.com.

LEAP (2001). Lightweight Extensible Agent Platform.
http://leap.crm-paris.com. IST-1999-10211.

Mc Ilraith, S., Son, T. C., and Zheng, H. (2001). Semantic
Web Services. IEEE Intelligent Systems, 16(2):46-53.

Piccinelli, G. and Mokrushin, L. (2001). Dynamic Service
Aggregation in Electronic Marketplaces. HP Labs
Technical Report, HPL-2001-31.

Ponnekanti, S. R. and Fox, A. (2002). SWORD: A De-
veloper Toolkit for Web Service Composition. In
WWW2002: The Eleventh International World Wide
Web Conference.

Rajpathak, S., E., M., and Roy, R. (2001). A Generic
Task Ontology for Scheduling Applications. In In-
ternational Conference on Artificial Intelligence (IC-
AI’'2001), pages 1037-1043, Las Vegas, Nevada,
USA.

UDDI (2001). Universal Description Discovery and Inte-
gration. http://www.uddi.org.

W3C (2001a). Semantic Web. http://www.w3.0rg/2001/sw.

W3C (2001b). Web Services Description Language Version
1.1. http://www.w3.org/TR/wsdl.

Weiss, G., e. (1999). Multiagent systems: A Modern Ap-
proach to Distributed Artificial Intelligence. The MIT
Press, Cambridge, MA.

Wooldridge, M. and Jennings, N. R. (1999). The Cooper-
ative Problem-Solving Process. Journal of Logic and
Computation, 9(4):563-592.

15

