
AN INFORMATION SYSTEM DEVELOPMENT TOOL BASED
ON PATTERN REUSE

Agnès Front-Conte, Ibtissem Hassine, Dominique.Rieu et Laurent Tastet
LSR-IMAG Laboratory, SIGMA team, BP 72, 38402 SAINT MARTIN D’HERES CEDEX – France

Keywords: Pattern, patterns system, reuse, pattern-based development tool.

Abstract: A pattern is a general and consensual solution to solve a problem frequently encountered in a particular
context. Patterns systems are becoming more and more numerous. They offer product patterns or process
patterns of varied range and cover (analysis, design or implementation patterns, and general, domain or
enterprise patterns). New application development environments have been developed together with these
pattern-oriented approaches. These tools address two kinds of actors: patterns engineers who specify
patterns systems, and applications engineers who use these systems to specify information systems. Most of
the existing development environments are made for applications engineers; they offer few functionalities
allowing definition and organization of patterns systems. This paper presents AGAP, a development
environment for defining and using patterns. Not only does AGAP address applications engineers, but it
also allows patterns engineers to define patterns systems.

1 INTRODUCTION

For several years, in many domains, the increasingly
permanent use of the information systems has
revealed the need to capitalize and reuse the
professional know-how. From this need emerges, in
information systems engineering, a new activity that
is the components reuse. A wide variety of reusable
component models have already been proposed to
integrate reuse in all applications development
processes: generic domain models (Maiden, 1994),
analysis patterns (Fowler, 1997), design patterns
(Gamma, 1995), frameworks (Johnson, 1992), etc.
In this paper, particular interest is given to the
pattern approach.

A pattern is considered as a tested and accepted
solution to a problem which occurs frequently in
information systems development. Patterns are
generally organized in patterns systems (Rieu,
2002). A patterns system defines a pattern collection
with rules allowing to combine them (exp. Gamma
patterns system, Ambler process patterns system
(Ambler, 1998) or Gzara PIS patterns system
(Gzara, 2000).

Several works integrate patterns in application
development environments (Borne, 1999). This
integration aims to automate their use and their
application in concrete design contexts. Different
kinds of pattern-based tools exist, research

prototypes (Pattern Tool (Meijers, 1996), FACE
(Meijers, 1997), etc) as well as commercial tools
(Rational XDE, TogetherJ, etc). Nevertheless, the
majority of existing tools only integrate E. Gamma’s
patterns system and don’t take into account the
patterns engineers needs.

This paper presents a reaserch project: AGAP, a
development environment based on pattern reuse
which combines the needs of applications engineers
who specify information systems by patterns
applications, and the needs of patterns engineers,
who specify patterns and patterns systems by using
the same formalism or by reusing items of existing
formalisms. The second section presents, functional
specification of AGAP, its architecture and resumes
its features and its functionalities by some screens
examples. To conclude, section 4 presents two
AGAP industrial experiences and proposes future
prospects of our research.

2 AGAP : A PATTERN-BASED
TOOL

The main goal of AGAP is to meet needs of the
pattern and application engineer.

548
Front-Conte A., Hassine I., Rieu D. and Tastet L. (2004).
AN INFORMATION SYSTEM DEVELOPMENT TOOL BASED ON PATTERN REUSE.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 548-551
DOI: 10.5220/0002643605480551
Copyright c© SciTePress

2.1 Actors

- The patterns engineer’s goal (figures 1) is to
create and define pattern. Moreover, he aims to
define patterns formalisms and patterns systems (PS)
described according to these formalisms. A pattern
system is applied to a given applicative domain (ex.
banking IS) according to a given technological
domain (ex. object-oriented).

Domain

Formalisme

Patterns System

Create
Domain

Create
Formalism

Patterns engineer

Create
PS Delete

PS
Modify

PS

Validate
PSVisualize

PS

Create
Pattern

«include» Duplicate
Pattern

«include»

Visualize
Pattern

«include»

«include»
Delete
Pattern

Modify
Pattern

«include»

«include»

«include»

«include»

«include»

Figure 1: A few patterns engineer use cases

- The main goal of the applications engineer is to
imitate pattern in order to model and design
information systems (IS). This imitation is based on
one or more PS available in AGAP. (figure 2).

Information System

Applications Engineer

Create
IS

Modify
IS

Validate
IS

Delete
IS

Search
Pattern

«include»

Create Pattern
Imitation

Delete Pattern
Imitation

Visualize
IS Trace

«include» «include»

«include»
«include»

Patterns System

Visualize
PS

Visualize
Pattern «include»

Figure 2: Applications engineer use cases

- The administrator manage AGAP by assuring :
connection to the data base, user management and
finally deletion of validated components, for
example, a validated pattern system can be deleted
only by the administrator who will make sure that no
more user wants to use it.

2.2 Functional Specification

AGAP is composed of 7 business components: Tool,
User, Field-type, Domain, Formalism, Patterns

system and Information System. Only Tool and
Patterns system components will be described in this
paper. The structure of each component conforms to
the business components structuring of the
Symphony process (Hassine, 2002).

2.2.1 Component « Tool »

The component « Tool » is the base component of
AGAP. It plays the role of a mediator between the
user and the other business components. The
interface includes the features expected by the user.
These features correspond to all the use cases quoted
in the section 0.

Tool

«interface»
ToolService

For Field Type, Formalisme,
IS, PS : Create, Visualize,
Modify, Validate and Delete
For Domain : Create,
Visualize, Modify, Enrich,
Validate and Delete
For User : Create, Visualize,
Modify and Delete

«Master»
Tool

«Role»
Field Type

«Role»
Domain

«Role»
Formalism

«Role»
patterns System

«Role»
Information system

«Role»
User

*

*

*

*

*

*

(What I can do) (What I am) (What I Use)
Figure 3: Component « Tool »

2.2.2 Component « Patterns system »

A pattern system is composed of patterns. described
in a given formalism.

 Pattern System

Pattern System Service
<<Interface>>

Domain
<<Role>>

Patterns system
<<Master>>

*

1

<<Part>>
 Pattern

*

<<Role>>
Item

Item-Value

1

<<Role>>
Field Field-Value

1..* 1..*

create_pattern_system()
visualize_ pattern_system()
modify_ pattern_system()
validate_ pattern_system()
delete_ pattern_system()
create_pattern()
duplicate_pattern()
visualize_pattern()
modify_pattern()
delete_pattern()

(What I can do) (What I am) (What I use)

1

Formalism
<<Role>>

1

0

1

*

*

 *
1 *

AD
TD

1..*

1

Figure 4: Component “Pattern system”

Each pattern has a given number of items whose
fields are defined in the associated formalism. The
value of every field has to respect the definition
given in the field type associated to the field.

Application : The Figure 5 shows the creation
screen of «GAMMA pattern system».

AN INFORMATION SYSTEM DEVELOPMENT TOOL BASED ON PATTERN REUSE

549

Figure 5 : Creation screen of «GAMMA PS»

2.3 Architecture

The current version of AGAP is an evolution of
some last versions (Conte, 2001). This evolution
takes into account applications engineer aims which
is the creation of its information system. To realize
this task, the application engineer needs to look for a
solution described by a pattern specified in a given
patterns system. Then, he realizes the imitation and
the integration of this pattern in its information
system. He must also be able to visualize the
integration traceability.

2.3.1 Cooperation with other modeling tools

AGAP has to allow to manage various diagrams
types : class diagrams, sequence diagrams, etc. He
must also be able to modify and to manipulate their
contents. In this purpose AGAP is coupled with
other evolved existing tools specialized to realize
these tasks (Rose, Objecteering, etc.).

A first cooperation mode proposes the following
architecture (figure 7):

AGAP

TOMCATTOMCAT

Case
tool

Shared
directoryJavaServlet

R
E
Q
U
E
S
T

R
E
S
P
O
N
S
E

Server DB

Customer

UML
Diagram

XMI
Files

Management
of the shared

directory

Figure 6: Cooperation AGAP/UML case tool

In the server part are defined a shared directory
accessible by AGAP users, a common data base in
which the link between the diagram file and the
pattern will be protected (its name, its protection
place) and Java servlets which ensure the
management of the diagrams files within the shared
directory: creation of pattern workspace, naming of
the diagrams files, validation of the diagrams files,
etc. Diagrams are saved in XMI files. XMI (XML
Metadata Interchange) allows to exchange logical
UML models between various distributors of UML
case tools.

2.3.2 Pattern exchange format

Each pattern belongs to a patterns system, which
itself represented in a particular formalism. One or
several items of the formalism contain the solution
of the pattern. To allow a better imitation and
integration, a field is added to the item solution
which will contain the pattern constraints. This
solutions are created in case tools as ArgoUML,
Rational Rose, etc. Each case tool allows to save
UML diagrams in XMI. However, the result file is
not completely compatible between the various
tools. Indeed, it is based on a normalized DTD
(UML 1.3 and UML 1.4), but each case tool adds
extensions to allow for example the diagram
drawing. To be case tool independent, AGAP
generates an XMI file which contains only the
necessary data for the UML diagram. To couple a
case tool to AGAP, it is necessary to associate to it
all the features allowing to generate this generic
XMI file, as well as the invert features.

2.3.3 Imitation and Integration

An imitation is an adaptation of the solution
preserving the essence of the pattern problem.
Solution imitation is made from the generic XMI file
of the solution. The integration is the result of the
fusion of two XMI files, the pattern XMI file and the
information system XMI file.

ICEIS 2004 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

550

AGL

Allows to seize a UML diagram

Patterns Engineer

XMI
Tool

created integrate

merge

AGL Allows to modify a UML diagram

Applications Engineer search
XMI

credits
duplicated

XMI
credits

duplicated

imitate

YESInformation
System

Class
Diagram

Class
Diagram

XMIXMI

AGAP

generate

PatternPattern

Class
Diagram

Class
Diagram

XmiXmi

AGAP

generate

XMIXMI

Tool

created

AGAP Catalog

Validated
pattern

Figure 7: AGAP imitation and integration processes

Application : The shows the imitation screen of
«Adapter pattern ».

Figure 8 : Imitation screen of «Ada

3 CONCLUSION

This article presented AGAP,
environment suited to two typ
applications engineers and patte
AGAP addresses therefore two types
- a process by reuse allowing the
information systems by selecting,
integrating patterns applications,
- a process for reuse allowing the PE
organize patterns systems.

AGAP evolved from a prototy
functional product and was used
specify two formalisms: P-Sigma (C
Gamma as well as Gamma patterns s
1995) and two patterns systems writ

These patterns systems result from applied
researches on two projects in collaboration with
industrial companies. The first one focuses on the
engineering of Product Information Systems (PIS) of
industrial enterprises (Gzara, 2000) and was
developed in collaboration with Schneider Electric
company (project CNRS PROSPER-POSEIDON).
The second patterns system concerns the
specification of Symphony, a development process
based on business components proposed by the
UMANIS company.

From these first validated results, other research
works were initiated to facilitate reuse in
information systems engineering field and to
guaranty a traceability between design choices and
software products resulting from the design.

REFERENCES

Ambler, S.W., 1998. Process Patterns building Large
Scale Systems using Object technology, SIGS Books,
Cambridge University Press.

Borne, I., Revault, N., 1999. Comparaison d’outils de mise
en oeuvre de design patterns, Object-oriented
Patterns, Vol5, num2.

Conte. A, Giraudin J .P., Hassine I., Rieu D. 2001, Un
environnement et un formalisme pour la définition, la
gestion et l’application de patrons, Revue ISI vol 6

AN INFORMATION SYSTEM DEVELOPMENT TOOL BASED ON PATTERN REUSE

n°2.

Fowler, M., 1997. Analysis Patterns – Reusable Object
Models, Addison-Wesley.

Gamma, E., Helm, R., Johnson, R.E., Vlissides, J., 1995.
Design patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley,

Gzara L., Rieu D. 2000. Tollenaere M., Pattern Approach

pter Pattern»

a development
es of actors,
rns engineers.
 of processes:
 AE to define
 applying and

 to define and to

pe model to a
wright now to
onte, 2001) and
ystem (Gamma,
ten in P-Sigma.

To Product Information Systems Engineering,
Requirements Engineering Journal, Editors: Peri
Loucopoulos & Colin Potts, Springer- Verlag,
London.

Hassine I., Rieu D., Bounaas F., Seghrnouchni O. ,
« Symphony : Un modèle conceptuel de composants
métier» Revue ISI, volume 7, numéro 4, Hermès,
2002.

Johnson, R.E., 1992. Documenting Frameworks using
Patterns, OOPSLA'92.

Maiden, N., Sutcliffe, A., Taylor, C., Till, D., 1994. A set
of formal problem abstractions for reuse during
requirements engineering, ISI, Hermes, vol. 2, n° 6.

Meijers M., 1996. Tools Support for Object-Oriented
Design Patterns, Master's Thesis, Utrecht University.

Meijler, S. Demeyer, R. Engel, 1997. Making design
patterns explicit in Face, ESEC/FSE 97.

Rieu, D., Giraudin, J.P., Conte A., 2002. Pattern-Based
Environments for Information Systems Development,
The Sciences of Design, Lyon, France.

551

