
A WEB-BASED TIME BOOKING FRAMEWORK

Liping Zhao, Abdelgadir Ibrahim
Department of Computation, UMIST, Manchester, U.K.

Keywords: Framework, pattern, product family, web-based application

Abstract: A framework can be viewed as a design schema from which application systems derive.
Application systems of a framework are called instantiations of the framework and collectively
form a product family. The article describes the development of a web-based time booking
framework. The development consists of three main stages: meta level design, framework level
design and application instantiation. The article illustrates, through the development of a car
hiring application system, that once the framework is in place, instantiating an application system
only requires a few simple steps.

1 INTRODUCTION

Many business and service providers require that
assets, whether they are tangible such as conference
rooms or intangible ones such as doctor
appointments, be booked for a particular date and
time prior to their use in order to prevent overload
and undesirable time clashes. For the purpose of this
article a booking system is defined as a set of
mechanisms and procedures together with the
supporting tools, whether in paper or electronic
form, that enable a business to provide its customers
with a specific service at a pre-agreed date and time.
In this article, the terms asset and service are used
interchangeably to refer to the booked entity, and the
same applies to business and service provider.

 The booking procedure may vary from one
business to another and may also vary according to
the characteristics of the customer or the booked
asset. Some business for example only accepts
bookings from registered customers e.g. a health
care surgery. Others may impose some restrictions
on the assets that a customer is allowed to book. A
car hiring company, for example, may employ a
policy that prevent customers with certain number of
license penalty points from hiring cars of a certain
value. Yet other business may demand that bookings
be made at least a specific number of days in
advance for managerial purposes. These collectively
are termed business rules and they provide the
operational behaviour of the booking system.

Although the business rules for time booking
may vary from one application to another, most time

booking applications share, albeit possible small
variations, a common set of procedures for asset
booking. These involve a customer contacting a
service provider and requesting a specific service.
Based on the service request, the provider then
presents the customer with a list of possible times at
which the service can be offered. Once the customer
has selected the desired time, the provider then
confirms the agreed time either verbally or in written
form. Figure 1 illustrates this common booking
process.

The identification of the common booking
process in Figure 1 suggests that it make sense to
develop a time booking framework for different
booking applications. Developers utilising this
framework can then extend this common
functionality as appropriate for their specific
application requirements.

Framework development is more difficult and
expensive than normal application development
(Durham, Johnson, 1996). In order to be useful, a
framework must be simple and easy for a developer
to understand and learn while at the same time be
functionally rich so that it can be used quickly and
easily without much effort by developers.
Furthermore, a framework must be sufficiently
flexible so that they can be customised for the
individual application requirements. Hence a
framework should only be developed in situations
where applications share a common set of
requirements. Application systems of a framework
are called instantiations of the framework and
collectively, they are referred to as a product family
(Parnas, 1976). All the members in a product family

439
Zhao L. and Ibrahim A. (2004).
A WEB-BASED TIME BOOKING FRAMEWORK.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 439-442
DOI: 10.5220/0002646404390442
Copyright c© SciTePress

Client
Interface

Web
Server

Request Request

Response

Response

Database

Request Response

Java Servlets

Java Sever
Pages

Java Beans

Controller

ModelView

Application Server

Client
Interface

Web
Server

Request Request

Response

Response

DatabaseDatabase

Request Response

Java ServletsJava Servlets

Java Sever
Pages

Java Sever
Pages

Java BeansJava Beans

Controller

ModelView

Application Server

Customer
requests
to book

a service

Clerk searches
For available

time slots

Clerk presents
a list of available

time slots
to customer

are similar in their generic functionality, but each
member addresses a different business need.

This article illustrates the development of a web-
based framework for time booking applications. It
describes the three main design stages, which are
meta level design, framework level design and
application instantiation. The article illustrates,
through the development of a car hiring application
system, that once the framework is in place,
instantiating an application system only requires a
few simple steps.

Clerk confirms
booking

Valid request

Invalid
request Not available

Available

Customer declines

Customer accepts
a slot

Booking completedEnd

Start

Customer
requests
to book

a service

Customer
requests
to book

a service

Clerk searches
For available

time slots

Clerk searches
For available

time slots

Clerk presents
a list of available

time slots
to customer

Clerk presents
a list of available

time slots
to customer

Clerk confirms
booking

Clerk confirms
booking

Valid request

Invalid
request Not available

Available

Customer declines

Customer accepts
a slot

Booking completedEnd

Start

Figure 1: Common booking process

2 FRAMEWORK DEVELOPMENT

We have adopted the classic three-tier architecture
for the framework development and the Model 2
(PetSchulat, 2001) approach as our server side
technology (Figure 2). Model 2 combines Java
Server Pages (JSPs), Java Servlets and Java Beans
(Govoni, 1991), (Hall, 2002), which fit into the
Model-View-Controller (MVC) architecture
(Reenskaug, 1996). In Model 2, Java Beans act as
the model, containing time booking functionality
and requirements. Java Servlets act as the
controllers, receiving users’ input and serving their
requests before forwarding control to the appropriate
JSP for presentation. The controllers also make
available to the JSP environment all the required
beans from which the JSPs can extract the results for
presentation to users. The JSPs play the role of the
view which provides the page layout for the user
interface. By dividing the application server into the
model, the views and the controllers, the framework
developers can work independently on different
parts of the application.

Figure 2: The framework architecture

For space reason, this paper focuses on the

development of Java Beans (the model) as shown in
Figure 2. We divide framework development into
the three levels. At the top level, or meta-level, we
design the framework’s schema, which outlines the
arrangement of the framework components. At this
level, a framework component is a grouping of a set
of classes. The framework schema is similar to the
relational database schema in that it is generally
applicable to a broad range of frameworks. In the
middle level, or framework level, we design the
classes and interfaces of a particular framework. A
framework thus can be viewed as an instance of the
framework schema. A framework corresponds to a
relational table description. At the bottom level, we
derive a particular application system by extending
the framework.

2.1 Meta Level Design

The model is the heart of the framework, which
contains time booking information, functionality and
requirements. The model is also the gateway to the
database which stores all the persistent booking
information. The meta level of the model consists of
two components: Application Services and Java
Beans (Figure 3). Java Beans are a set of Java
classes which have three main responsibilities: (1) to
represent business requirements, (2) to serve as a
mapping between the database and other framework
components, and (3) to manipulate the database.
These Java Bean classes are called Data Beans to
reflect the nature of their responsibility. The
Application Services component has two major
responsibilities: (1) to interact with Data Bean
classes and (2) to provide other framework
components with all the booking related functions.
The Application Services interacts with a data bean
in the following manner:
– An application service component first creates

and populates a bean with the content of a

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

440

database record. Thereafter, all changes to that
record are made to the specific bean, which then
propagates to the database.

Application
Services

Table A

Table B

Table C

Database

Data Beans
Application

Services

Table A

Table B

Table C

Database

Data Beans

– A data bean holds the content of a database record
created by a booking service object and knows
how to update, insert or delete that record. The
framework makes changes to a record here instead
of directly manipulating the database.

Figure 3: The schema of the
framework model

2.2 Framework Level Design
The framework level design concerns designing the
classes and interfaces of the booking framework,
which consists of the following steps.

Step 1. Designing data bean classes. The data
bean classes represent business requirements and
map these requirements onto a set of database tables.
The challenge is to decide how to divide the
business requirements into appropriate classes to
achieve a common maximum subset of
requirements. To help us to make the decision, we
have used the E-R modelling and relational database
normalization techniques. The result of this design
is given in Figure 4.

DataBean

Asset Asset
Category CategoryBookingAssetOp

Time
Time Slot User

DataBean

Asset Asset
Category CategoryBookingAssetOp

Time
Time Slot User

Booking
Services

Application
Services

Booking
Services

Application
Services

Bean Class Description
Asset Represent an asset record and

related operations
AssetCategory Represent an asset category

record and related operations
AssetOpTime Represent an operational hour

record and related operations
Booking Represent a booking record and

related operations
Category Represent a category record and

related operations
TimeSlot Represent a time slot record and

related operations
User Represent a user record and

related operations
Figure 4: Java bean classes for booking requirements

In Figure 4, all the classes are abstract classes.
DataBean is the interface to all the Bean classes.
This reduces the coupling between other framework
components and the Bean classes and increases the
framework’s extendibility. The application
developer can extend or add a new Bean class
through the interface. Similarly, this design reduces
the coupling between the framework components
and the database tables. Hence, if changes are to be
made to a database table such as renaming or adding
a new column, only the relevant bean may need to
be changed. Furthermore, the relational-object
mapping in the Bean classes simplifies other
framework components as they can now interact
with the relational database in an object-oriented
fashion.

To maximize the flexibility and extensibility of
these Beans, we have used the Factory Method
pattern for instantiating Bean objects and the
Template Method pattern (Gamma, Helm, Johnson,
Vlissides, 1995) for implementing operations.

Step 2. Designing Application Services classes.
As stated in Section 2.1, the Application Services
component holds the responsibility of interacting
with the Data Beans and providing all the booking
related functions. We first design an Application
Services interface for other framework components,
such as the controllers. We then derive a Booking
Services interface as the main entry point for all the
booking related functions. Figure 5 illustrates this
design.

Figure 5: Booking services containing booking functions

2.3 Framework Instantiation

To develop a car hiring booking system, we take the
following steps:
1. Add the following vehicle specific fields to the

ASSETS table:
REGNO; MODEL; INSURANCE; FUEL;
MILEAGE; PRICING; ADDITONALINFO;
DEPOSIT; SEATING; TONNAGE

2. Create a Bean class Vehicle which extends class
Asset with attributes and methods that handle the
above additional fields.

3. Create a VehicleBeanFactory class which extends
BookingBeanFactory and overrides the
appropriate methods to return an asset of type
Vehicle instead of the default DefaultAssetImpl.

A WEB-BASED TIME BOOKING FRAMEWORK

441

4. Create a VehicleBookingServices class which
extends the BookingServices class and overrides
method createBeanFactory() to return a
VehicleBeanFactory instead of the default
BookingBeanFactory.

5. Modify the appropriate JSP to include vehicle
specific fields.

Figure 6 illustrates the framework design structure.

Asset

DataBean

BookingBean
Factory

DataBean
Factory

Booking
Services

Application
Services

Vehicle

Extends

VehicleBean
Factory

VehicleBooking
Services

Extends Extends

Meta Level

Framework
(e.g. a booking
framework)

Application
System or
Instantiation
(e.g. a booking
system)

Asset

DataBean

BookingBean
Factory

DataBean
Factory

Booking
Services

Application
Services

Booking
Services

Application
Services

Vehicle

Extends

VehicleBean
Factory

VehicleBooking
Services

Extends Extends

Meta Level

Framework
(e.g. a booking
framework)

Application
System or
Instantiation
(e.g. a booking
system)

Figure 6: The three levels of framework design

3 CONCLUSION

Framework design takes place at the three levels.
The top level is the schema or meta design, which
identifies and arranges the groupings of the
framework components. A framework schema
should be generally applicable to a variety of
frameworks. The middle level design is specific to a
framework, concerning the mapping of user
requirements onto the classes, the design of
interfaces and functionality. The middle level design
is perhaps the most challenging one as it needs to
consider how the framework can cope with the
future change and what flexibility should be built
into the framework so that changes can be made
without major redesign of the framework.

The bottom level design is to generate a specific
application system, which involves extending the
framework classes and overriding the class methods.
Suffice it to say that the main purpose of
frameworks is to reduce the time and cost of design
at this level by facilitating reuse of both design and
implementation at the levels above.

The article has demonstrated that the booking
framework can be easily extended to implement an
application system. Although framework
development incurs higher costs, the costs will be
paid off when the framework is used to create
application systems, which only requires a few
simple steps.

ACKNOWLEDGEMENTS

We appreciate the valuable comments from the
reviewers.

REFERENCES

Durham, A., Johnson, R. (1996). A Framework for Run-
time Systems and its Visual Programming Language.
In Proc. Of OOPSLA ’96, Object-Oriented
Programming Systems, Languages, and Applications.
San Jose, CA.

Gamma, E., Helm, R., Johnson, R. Vlissides, J. (1995).
Design Patterns, Elements of Reusable Object-
Oriented Software, Reading, MA: Addison-Wesley.

Govoni, D. (1999). Java application frameworks, John
Wiley & Sons.

Hall, M. (2002). More servlets and Java server pages, Sun
Microsystems Inc.

Parnas, D. L. (1976). On the design and development of
program families, IEEE Transactions on Software
Engineering, vol. 2, no. 1.

PetSchulat, S. (2001). JSP or Servlets - which architecture
is right for you? Java Report, no. 6.

Reenskaug, T. (1996). Working With Objects, USA:
Manning.

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

442

