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Abstract: The Unified Modeling Language (UML) has merged as a de-facto standard for modeling especially 
information systems. However, in spite of its wide spread usage, UML still lacks support for verification 
methods and tools.  Several researches proposed verification methods for certain UML diagrams, however, 
none of the proposed methods covers all of the UML diagrams, which are semantically overlapping in any 
system model. 
In this paper, we propose a modular verification method for UML models.  The proposed method uses the 
implicit (semantic) and explicit (syntactic) relations among all the diagrams of a UML model.  The implicit 
inter-diagram relations are deduced from the UP design process. In this paper, we overview the proposed 
method and illustrate its feasibility through an information system example. 

1 INTRODUCTION  

UML is a semi-formal language for visualizing, 
specifying, constructing and documenting artifacts 
of software systems (UML Group, 1997). It is 
becoming the dominant object-oriented modeling 
language for the design of information systems.  

To specify the different aspects of a system, the 
UML notation proposes nine diagrams. The various 
diagrams of a UML model are explicitly related 
through the syntactic rules of UML (UML Group, 
1997). For instance, each use case in the use case 
diagram is represented by at least one sequence 
diagram, and each object in the sequence diagram is 
an instance of a class in the class diagram. In 
addition, depending on the adopted specification 
process, a model’s diagrams are also implicitly 
related. For example, following the Unified Process 
(Jacobson et al., 1999), a use case model is specified 
by the analysis model which is expressed through a 
collaboration diagram, a set of sequence diagrams 
and an activity diagram. 

On the other hand, with the increasing 
complexity of today’s systems, the need for a 

rigorous development process is ever pressing for 
verification methods. In practice, two verification 
techniques are generally used: peer review and 
software testing. However, only 15% of errors can 
be detected during the design phase and the 
reparation cost of errors is 500 times greater during 
the maintenance phase than during the design phase 
(Utwente, 2002). In addition, 2/3 of the bugs come 
from the analysis and design activities while 1/3 of 
the bugs come from the implementation activity 
(Printz, 1997).  Thus, in order to reduce the overall 
software development cost, formal verification tools 
are required to verify that the requirements can be 
fulfilled by the specification and to detect 
specification errors in an early phase of the design 
process.  

In the case of UML-based models, verification 
techniques must face two obstacles. The first stems 
from the fact that a UML model typically includes 
various diagrams. The second obstacle is due to the 
lack of a unique formal semantics for all of the UML 
diagrams. These two obstacles motivated us to look 
for a modular analysis technique that would render 
the verification of a UML model into an analysis of 
certain diagrams of the model. This approach can 
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benefit from the various semantics and analysis 
techniques proposed for some UML diagrams, c.f., 
(Latella et al., 1999); (Paludetto et al., 1999).  

Our modular verification exploits the implicit 
(i.e., semantic) and explicit relationships among the 
various UML diagrams of a system model. The 
implicit relations among the diagrams of a model are 
deduced from the Unified Process (Jacobson et al., 
1999) where a system model is derived 
incrementally. The explicit relations are deduced 
from the UML syntax (UML group, 1997). Thus, 
our modular verification approach defines formally 
the two types of relations among a UML model’s 
diagrams. This formal definition eliminates several 
problems such as wrong model interpretations and 
inconsistent diagrams within the same system model 
(Pons et al., 2002).    

In Section 2, we briefly overview proposed 
verification methods for UML. In section 3, we 
present the Unified Process (UP) (Jacobson et al., 
1999) and the implicit relations among the various 
diagrams of an UML model generated through UP. 
In section 4, we first present our verification method 
that uses the implicit and explicit (syntactic) 
relations among a UML model’s diagrams.  
Secondly, we illustrate our verification method 
through an information system example.  Section 5 
summarizes the paper and outlines our future work.     

2 RELATED WORKS  

Several researchers have proposed a precise 
description of UML concepts and provided rules to 
verify when a system model satisfies a given 
property. Overall, most of the proposed approaches 
focus on models described through one type of 
diagram that describes either the static, dynamic or 
functional aspects of the system.  In addition, the 
proposed approaches either rely on the meta-model 
of UML or on the translation of UML diagrams to a 
formal language. 

2.1 Meta-model Verification  

This technique combines the graphical notation, 
natural language and a formal language. It gives a 
syntactic description of the language. It’s described 
in (Evans et al., 1999) as following: 
“The UML semantics is described using a meta-
model that is presented in terms of three views: the 
abstract syntax, well-formedness rules, and 
modeling element semantics. The abstract syntax is 
expressed using a subset of UML static modeling 
notations. The abstract syntax model is supported by 
natural language descriptions of the syntactic 

structure of UML constructs. The well formedness 
rules are expressed in the Object Constraint 
Language (OCL) and the semantics of modeling 
elements are described in natural language. The 
advantage of using the meta-modeling approach is 
that it is accessible to anybody who understands 
UML”. 

Thus, the meta-model of UML gives a precise 
notion of only the abstract syntax and does not 
consider the semantics.  OCL is usually used to 
explain constraints that must hold for a model to be 
well-formed. 

2.2 UML Verification through 
Diagram Formalization  

In the formalization of object-oriented concepts, 
there are three general approaches: 1) the 
supplemental approach, where an informal parts of a 
model are expressed in natural language (c.f., Cook 
et al., 1994); 2) the OO-extended approach, where 
an existing formal notation, e.g., Z (Michael, 1992) 
and VDM (Lucas, 1987), are extended with 
Oriented-Object features, e.g., Z++(Lano, 1991), 
Object-Z (Duke, et al., 1991), VDM++ (Dürr et al., 
1993); and 3) the integration approach which 
generates a formal specification from an informal 
object-oriented model, c.f., (Anthony, 1990; France, 
1998; Roebert  et al.,  1995).  

As for the formalization of UML, the majority of 
works focuses on one aspect of a model. In general, 
the dynamic aspect expressed by for instance the 
statecharts diagram. For example, the author in 
(Latella et al., 1999) translates UML statecharts 
diagram to Promela (PROcess Meta LAnguage), the 
specification language of SPIN (Holzmann, 1997) 
tool. This language creates a communicating 
automaton checked by SPIN. A similar approach 
was adopted by (Kwon, 2000), who translates a 
UML statecharts to SMV (Symbolic Model 
Verifier) (McMillan, 1992) and checks the 
statecharts diagram with the SMV modeler checker. 
In (Paulo, et al., 2000), the authors translate a part of 
UML models to a LOTUS specification (ISO. 
LOTOS, 1985) and check the specification with the 
CADP (Caesar/Aldebaran Development Package) 
check box tool (Fernandez et al., 1992); finally, the 
authors in (Paludetto et al., 1999) translate the 
statecharts diagram to Petri Nets.   

The above works define a precise syntax and 
semantics for isolated UML diagrams without 
dealing with the relations between the various 
diagrams in an UML model. 
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3 INTER-DIAGRAM RELATIONS 
IN UP  

Several design processes have been proposed to 
derive a UML model, e.g., the Unified Process (UP) 
(Jacobson et al., 1999), Catalysis (D’Souza et al., 
1999) and Rational Unified Process (RUP) 
(Kurchten, 1999). 

UP is an iterative and incremental process. As 
illustrated in Figure 1, during this process, a UML 
model is created and refined during consecutive 
iterations and phases in the development process. In 
each development phase, a system model is derived 

using certain UML diagrams, depending on the 
focus of the phase.  Table 1 lists the UML diagrams 
used to construct a model for each of the UP 
development phases. 

As shown in Figure 1, the various models 
derived following UP are not independent. In fact, 
they are semantically overlapping and 
complementary when presenting the target system as 
a whole unit. Since, each model is a set of UML 
diagrams (see Table 1); the UP model dependencies 
implicitly imply dependencies among the UML 
diagrams used. 
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Figure 1: UP models and their relationships (Jacobson et al., 1999)  
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Table 1: UML diagrams used in UP models (Jacobson et al., 1999) 
UP Models UML Diagrams 

re  Use case model Use case diagram 
 

Analysis Model 
Collaboration Diagram 
Sequence Diagram 
Activity Diagram 

 
Design Model 

Class Diagram 
Object Diagram 
Package Diagram 
State-Transition Diagram 

Distribution Model Deployment Diagram 
Implementation Model Component  Diagram 
Test Model  



UP highlights the implicit relationships among a 
system models such as “specified by”, “realized by”, 
“implemented by”, etc (see Figure 1). These implicit 
relations will be the basis of our approach to a 
modular verification of UML models. 

4 MODULAR VERIFICATION OF 
UML MODELS  

To manage the complex analysis of a UML model 
and verify both the syntactic and semantic aspects of 
a system model, we propose to: 

1. define a model’s inter-diagram implicit 
relations as proposed by UP, and  

2. use the defined relations (along with the 
UML syntactic dependencies) to infer that a 
UML model satisfies a given property by 
verifying that certain diagrams of the model 
satisfy the property. 

We next introduce several definitions that we 
use to formalize the inter-diagram relations and to 
provide for a modular verification of an UML 
model. 

4.1 Definitions  

Similar to UP, we suppose that a UML system 
model (M) is a set of UML diagrams (Jacobson et 
al., 1999) that represent different aspects of the 
system at a certain level of abstraction. A model 
describes the static, dynamic or functional aspects of 
a system. Formally, a system model M is the 
structure < D, Rinter> where D is a set of UML 
diagrams and Rinter is a set of relationships between 
diagrams in D. The set of inter-diagram relations 
RInter is the object of this paper.  It is detailed in the 
next Section. 
 

In general, a diagram D == < E , Rintra > where 
- E: a set of structural elements (e.g. use cases, 

actors, classes,). 
- Rintra: a set of relations between the structural 

elements, defined according to the UML 
syntax and semantics (UML Group, 1997). 

 
For the complete set of UML structural 

elements, we refer the reader to the UML semantics 
(UML Group, 1997). In addition, the meta-model of 
UML details out the relationships between the 
structural elements of each UML diagram (UML 
Group, 1997). Due to space limitations, we next 
detail out only the three diagrams used in this paper 

to illustrate our verification method; the remaining 
UML diagrams can be defined in a similar manner. 

 
A use case diagram is the structure 

 
Uc  == <A ∪U, Rintra> where  

Def 

- A = { a1,…….,an} is a set of actors,  
- U = { u1,………,um} is a set use cases each 

of which is described by a sequence of 
actions, 

- Rintra is a set of relations from the set { 
<<extend>>, <<include>>, << 
communicate >>,  <<Generalize>> } and 
defined between the structural elements 
A∪U according to the UML syntax (UML 
Group, 1997). 

 
A collaboration diagram is the structure 

 
Co  == <O, L ∪M> where 

Def 

- O = {o1,……,ou} is a set of objects,  
- L = {l1,…….,lv} is a set of links 

between objects, 
- M =  { m1,…,mw} is a set of messages 

between objects. 

4.2 Inter-diagram relations in a UML 
Model 

Our verification method exploits the implicit inter-
diagram relations inspired from UP. These relations 
are defined between the diagrams of a given UML 
system model. They are presented in Figure 2 as a 
directed, labeled graph.  In the graph, vertices 
represent UML diagrams and edges represent the 
dependency relations between the diagrams. 

We call the set of relations defined in the inter-
diagram dependency graph of Figure 2 the implicit 
relations. These relations reflect the inter-model 
relations presented in the UP design process (see 
figure 1). We can therefore surcharge their definition 
over the set of system models as follows: 

Def 

Definition 1    
Let M1 = < D1 , R1> and M2 = < D2, , R2> be 

two system models.  We say, “r is an implicit 
relation between M1 and M2”, if and only if there 
exists D1 ∈ D1 and D2 ∈ D2, such that r is an 
implicit relation between D1 and D2
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Figure 2: Inter-diagram dependency graph 
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4.3 UML Model Verification 
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∈ 

The inter-diagram relations defined above can be 
exploited to reduce the verification of a UML model 
to the verification of some of its diagrams and not all 
of them. 

A UML diagram D satisfies a logic formula P (D 
╞ P) is defined inductively based on the type of D 
and the syntax of P.  For instance, let us define the 
case when D is a use case diagram. 

 
Inter-model relation 

Definition 2 
A use case diagram Uc == < A ∪ U, Rintra> 

satisfies the prepositional logic formula P (Uc ╞ P) 
if an only if: 

Def 

1. there exists either: 
   a. an actor a ∈ A that represents P and P is a 

predicate; or  
    b. a use case u ∈ U   “representing” P and P is a 
predicate.  
2.  if P expressed in terms of the p1, p2 predicates 

and  
a. there exists a relation  a <<communicate>> u 
∈ Rintra such that  a represents p1 and u 
represents p2 and P = p1 ∧ p2, 

b. there exists a relation  u1 <<include>>u ∈ Rintra 
such that u1 represents p1 and u2 represents p2 
and    P = p1   p2 ,   

c. there exists a relation u1<<extend>>u2 ∈ Rintra 
such that   u1 represents p2 and u2 represents p2 
and P = p2   p1.   



3.    if P = ¬P’, then Uc does not satisfy P’. 
4.    if  P1, P2 are two formulas, and 

a.    P= P1 ∨ P2 then either Uc ╞ P1 or Uc ╞ P2.  
b.   P= P1 ∧ P2 then Uc ╞ P1 and Uc ╞ P2. 

Definition 3 

A UML model M satisfies a property P (M ╞ P) 
if and only if each diagram D in M satisfies P (D ╞ 
P). 

To illustrate our modular verification approach, 
the following proposition states how the 
specification relation <<spec>> can be used to 
reduce the verification of a UML model to the 
verification of some of its diagrams. 

Proposition 
Let D1 and D2 be two UML diagrams and P be a 

prepositional logic formula.  If D1 ╞ P and 
D1<<spec>>D2, then D2╞ P. 

 
Using this proposition, if Uc ╞ P then for each 

diagram D reachable from Uc through edges labeled 
with <<spec>>, we have D ╞ P. Thus, we only 
need to verify the remaining diagrams of the model. 

4.4 Example 

In this section, we illustrate our UML model 
verification approach using the Automatic Teller 
Machine (ATM) example. Figure 4 shows a part of 
the ATM model which is expressed through a use 
case diagram Uc, an activity diagram Ac and 
collaboration diagram Co. The ATM use case 
diagram, shown in Figure 4-a, specifies the 
functional aspect of the ATM system. A part of the 
ATM dynamic system aspect is described by an 
activity (Figure 4-b) and a collaboration diagram 
that describes the interactions among the system 
objects (Figure 4-c). 

Suppose we want to verify the following ATM 
property P: “every customer can withdraw money if 
he/she can be identified by the bank host”. To 
express formally P, we use the following 
predicates and propositions:  

- customer(c) : c is a customer. 
- identification(c): c is identified as a client. 
- withdraw_money(c): c withdraws money. 

 
Thus, the property P can be expressed formally 

by the following proposition: 
 

withdraw_money(c) →  (customer(c) ∧ 
identification(c)).   

To prove that the ATM model satisfies the 
property P, we follow the next two steps: 

1. verify that Uc ╞ P, 
2. verify that  Uc <spec>> Co 
 

Verifying that Uc ╞ P can be easily through a 
syntactic analysis of the diagram and a 
correspondence among the use case diagram 
structural elements and formula components. Let us 
establish the following trivial correspondence 
between the predicates of P and the use case diagram 
elements: 

 
• the actor “costumer” represents the predicate 

customer(c), 
• the use case “withdraw_money” represents  the 

predicate withdraw_money(c), 
• the use case “identification” represents the 

predicate identification(c). 
 

In this example, we have: 
P = withdraw_money(c) → (customer(c) ∧ 
identification(c)),   

Thus, P = (withdraw_money(c) → customer(c)) 
∧ (withdraw_money(c) → identification(c)). 
 

 Hence, according to definition 1, we have: 
1. Uc ╞ (withdraw_money(c) → 

identification(c)) since the relation 
“costumer <<communicate >> 
withdraw_money” is in Uc, and  

2. Uc ╞ (withdraw_money(c) → 
identification(c)) since the relation 
“withdraw_money <<include>> 
identification”  is in Uc. 

 
 Using this syntactic inspection of the ATM use 

case diagram, we easily conclude that Uc ╞ P. 
 

In the second step, we verify that Uc <<spec>> 
Co and Uc <<spec>> Ac. The verification of the 
<<spec>> relation between Uc and Co is based on a 
list of UML syntactic and semantic rules that relate 
the two diagrams. It used detailed inspections of the 
structural elements of the use case diagram (e.g., the 
pre- and post-conditions and the guards of the 
activity diagram).  

In this step, it must be confirmed that the 
collaboration diagram and activity diagram are able 
to cope with the use case diagram. 

Finally, we have Uc ╞ P and  
               Uc <<spec>> Co ,  and  
               Uc <<spec>> Ac

Thus by this proposition  
                  Co ╞ P, and  Ac ╞P 
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CLUSION AND FUTURE 
RKS  

e Unified Process, a variety of UML-based 
f a system are developed. These models are 
 related to one another and are 
lly overlapping and complementary.  The 
elations among a UML model’s diagrams 

derived through UP (together with the UML 
syntactic dependency relations) can be exploited in a 
modular verification of a UML model.  In this paper, 
we showed the feasibility of this verification 
approach using a simple example that contains only 
tree diagrams and one implicit relationship 
<<spec>>.   

We are currently completing the formalization of 
the implicit inter-diagram relations and examining 
the set of properties verifiable through this approach. 
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