
A CONTENT ORIENTED ARCHITECTURE
FOR CONSUMER-TO-BUSINESS E-COMMERCE

Joshua H. Greenberg, Douglas Dankel II
University of Florida, Gainsville, Florida, USA

Borko Furht
Florida Atlantic University, Boca Raton, Florida, USA

Keywords: Consumer-to-Business, Strechability, Content oriented architecture, Content Biased Language (CBL)

Abstract: Consumer-to-Business (C2B) systems represent the future of eCommerce. Using natural language as a
basis, and remaining keenly aware of its potential pitfalls, we describe a software specific communication
model based on a new concept called Content Biased Language (CBL). It is shown that the requirements of
a C2B system cannot be satisfied with anything less than the stretchability of a CBL. Once this fact has
been established, the remainder of this paper discusses a representation for a CBL, as well as an architecture
for utilizing that representation. This effort results in the description of a new software quality measure
called stretchability, as well as the introduction of perspective domain graphs (PDGs), external open
ontological type systems (EOOTS), and global and constituent systems. Finally, the discussion closes with
the definition of a new distributed system design called the Content Oriented Architecture (COA).

1 INTRODUCTION

Business-to-Business, or B2B, is a well-known term
designating the Internet-based supply-chain oriented
transactions executed between corporations.
Business-to-Consumer (B2C) has also entered the
business executive’s arsenal of Internet-based
acronyms and generally signifies the set of activities
surrounding the marketing and selling of goods by
companies to individuals. Finally, the label
Consumer-to-Consumer (C2C) is usually applied to
online auctions and other non-corporate business
activities. While all of these buzzwords designate
important and profitable computing paradigms, it is
a less frequently discussed model that may prove
most revolutionary. Consumer-to-Business (C2B) is
defined in 1 and 5 as the comparison shopping
activities performed on-line by a user before
purchasing a product. While this definition may
accurately represent current implementations, it
barely scratches the surface of what is possible. By
enabling direct-marketing and self-marketing, the
C2B concepts proposed and clarified in this paper,
will allow consumers to do far more than simply

compare prices and characteristics. It will place
consumers on an equal footing with corporations.

If we move away from the notion of C2B as
comparison-shopping, then at present, the most
representative implementations are generally
categorized as wallet software systems. Until very
recently, the most formalized attempt at wallet
software systems was the Electronic Commerce
Modeling Language (ECML). ECML allows
"consumers to enter personal details once into the
wallet software, which could be called up as needed
to make payments to retailers" 6. Once the
information has been entered, order forms for
Internet transactions can be filled automatically with
data, such as billing preferences, shipping
information, identity, credit-card numbers, and
digital certificates 3.

As recently as a year ago, Microsoft was
discussing a new wallet based technology, code-
named Hailstorm and later renamed as .NET
MyServices. While the current status of the project
is unclear, it is interesting to note that the wallet
portion was to be called a safe-deposit box. While
no complete version of Hailstorm is currently
available, these naming choices, and the very

16
H. Greenberg J., Dankel II D. and Furht B. (2004).
A CONTENT ORIENTED ARCHITECTURE FOR CONSUMER-TO-BUSINESS E-COMMERCE.
In Proceedings of the Sixth International Conference on Enterprise Information Systems, pages 16-23
DOI: 10.5220/0002655200160023
Copyright c© SciTePress

existence of the product, demonstrate consensus
concerning the evolution of C2B from comparison-
shopping services to a complex consumer-based set
of applications. This expanded view of the wallet
more closely matches the domain of electronic
commerce, which as described in [4], "involves
everything one can do in the physical world:
advertising, shopping, bartering, negotiating
contracts and prices, bidding for contracts, ordering,
billing, payment, settlement, accounting, loans,
bonding, escrow, etc."

2 C2B SCENARIOS

The following scenarios help clarify the intended
role of C2B systems.

Mobile Shopper: A pedestrian is taking a walk
through the streets of San Francisco. She passes by
many shops and frequently pauses to peer through
the windows and examine the various offerings.
With so many stores to see, she rarely enters one
unless something quite special catches her eye. But
today, something different is about to happen. A
clothing store just down the street from her current
whereabouts recently installed a new C2B system.
Sensing the young woman’s C2B information on her
personal digital assistant (PDA), the store’s software
requests her identity, and based on it, determines her
clothing preferences. Reviewing current inventory,
the software finds that the shop is stocking a number
of items that seem to fit her profile. The pedestrian
is notified of a special sale on these particular items
by having a message pop-up on her PDA. She is
given directions to the store from her current
location, and soon after becomes a new customer.

Emergency Room: A businessman has just
fallen ill after a dinner with some potential clientele
in New York City. He is far away from his home
and his family physician in California. The
ambulance picks the gentleman up from his hotel
room and rushes him to the emergency room at the
nearest hospital. As a result of the food poisoning,
the patient is in no condition to fill out insurance
forms or to answer questions regarding family
history or allergies to various medications. But
today, nobody even asks. His identity is established,
and authorized hospital personnel retrieve his
medical information. In addition, the family doctor
on the other coast is notified of his patient’s
condition. The local doctors prescribe the necessary
treatment, and the following morning our
businessman is recovering without complications.

Insuring the Family: For the Hendersons, the
cost of car insurance just seems to keep increasing.
Their youngest son has just received his permit to

drive, and the rates have soared to new heights.
With both parents working, there is really no time to
deal with the hassle of calling twenty different
insurance companies to find the best rate. But today
they won’t have to. Wanting a number of changes to
their coverage, the Hendersons modify the
description of their current policy. The description
is not immutable and is created to include a number
of equally acceptable alternatives. The utility
function representing their requirements is sent onto
the Internet and eventually matched with a willing
insurer. Using public keys and digital signatures, the
Hendersons are signed up for the new policy and
receive their insurance cards the following morning.

A review of the scenarios above, as well as a
number of others, leads to development of the
following set of requirements:

· Support mobile/non-mobile users in
obtaining real-time, highly relevant information and
personalized attention.

· Support mobile/non-mobile users in the
maintenance and access of their personal data for a
variety of real-life situations.

· Enable creation of semantically enriched
“forms” for automated information
extraction/completion from personal information
sources.

· Enable matchmaking between personal
requirements and corporate offerings.

· Enable automated update of personal
information at the completion of specified
transactions.

· Enable registration of interest though profile
description along with means for anonymous
notification of discovered matches.

· Enable system creation in the absence of
well-specified type definitions or well-formulated
requirements.

· Enable automated system evolution in
support of new, custom data.

3 STRECHABILITY AS A
SOFTWARE QUALITY
MEASURE

The problems that arise when attempting to design a
C2B supportive architecture are best described
through the introduction of a new software quality
measure called stretchability. Stretchability is best
defined as an internal software quality akin to
evolvability and reusability but focused primarily on
type definitions rather than whole systems or
modules. Evolvability is a property attributed to
systems designed such that the addition of new

A CONTENT ORIENTED ARCHITECTURE FOR CONSUMER-TO-BUSINESS E-COMMERCE

17

functionality can be performed with minimal effort.
Reusability is a software quality that refers to
systems whose modules or components may be
reused with minimal modification to help create an
entirely new system.

Stretchability refers to a system’s capacity to
absorb changes to underlying type definitions and to
accept entities of an unknown type definition from
external sources. Since the evolution of a system
often requires modifications to type definitions, it is
clear that stretchability assists in evolvability.
Furthermore, since many systems differ little except
in their utilization of different domain data,
stretchability can be considered a support
mechanism for reusability. Finally, and very
importantly, it should be noted that stretchability
clearly differs from other software qualities in that it
involves immediate consideration of external
sources. This clearly reflects the intent and
importance of this metric as a measure of the
suitability of designs and implementations of
ubiquitous systems. In closing, it should be
mentioned that stretchability is an attribute that can
be applied with equal import to process as well as
product.

It is our belief that future systems must exhibit
ever-increasing degrees of stretchability to succeed
in a ubiquitous environment. These new systems
will be developed under the constraints of
incomplete and unstable requirements and will
enable the creation, communication, and
externalization of data along with completely
supportive semantic interpretations.

Three useful tools can be applied to help clarify
the required behavior of a stretchable system. First,
a six-faceted requirement (6FR) structure provides a
framework that helps classify the requirements of a
system based on the facets who, what, where, when,
why, and how. To help provide answers for each
facet, a number of software specification axioms
(SSAs) are defined. Each SSA provides a simple,
well-defined, and reusable description of a particular
aspect of software design. Finally, the combination
of a number of SSAs into a requirements pattern
(RP) provides a single semi-formal description of
system requirements.

4 THE IMPORTANCE OF
CONTENT

It is possible to categorize the intent of inter-agent
communication into three major types: data transfer,
content transfer, and knowledge transfer, as shown
in Table 1. Data transfer is the act of moving data
from one agent to another without any prior contract

between the sender and receiver regarding the
content or meaning of the transferred data. This
type of communication is very simple but can still be
useful for such tasks as database loading, application
logging, and file transfer protocols. It should be
immediately apparent that we are only concerning
ourselves with negotiation at or above the
presentation layer of the OSI model. There may be
quite a bit of a priori knowledge involved at the
lower levels to ensure that the data are properly
transmitted (i.e. packetized, CRCed, etc.) and
formatted (i.e. comma separated), but this
knowledge is exclusively concerned with form, not
meaning or function.

Table 1: SSA-Communication Intent

Value Description
None No data will be transferred

outside of the agent.
Data-
Transfer

Act of moving data from
sender to receiver without
any prior, direct or indirect
contract between the parties
regarding content or
meaning.

Content-
Transfer

Act of moving data from
sender to receiver such that
receiver can apply simple
conditional logic to discern
context based on a priori
contract with sender, a priori
contract with third-party
facilitator, and/or transferred
metadata manifest.

Knowledge-
Transfer

Act of moving data from
sender to receiver such that
receiver can apply simple
conditional logic to discern
context based on a priori
contract with sender, a priori
contract with third-party
facilitator, and/or transferred
metadata manifest.

Moving up the ladder of communication

complexity, we arrive at content transfer. Content
transfer depends on the ability to perform data
transfer but adds the additional requirement of
contextual agreement. That is, the sender and the
receiver must have previously agreed upon the
meaning of the transferred data such that the
receiver can determine what data it has received.
Furthermore, the receiver should be able to perform
simple conditional logic based on the content.
Whereas the recipient of a data transfer simply
performs a single function upon receipt of the data,
the content recipient can pass the data through a

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

18

state machine and perform varied behaviors
depending on what was received. Content transfer
has recently become a widely discussed topic, and
the extensible Markup Language (XML) was
introduced largely to enable such goals. With a
simple, standardized syntax in place, developers
using XML are able to spend more time considering
the semantics of their communications instead of
their format.

Knowledge transfer represents the pinnacle of
our simple classification of communications. Just as
content transfer required data transfer, so knowledge
transfer requires content transfer. This time,
however, we expect the recipient not only to accept
and process the content, but also to actually know
when it has learned something new and proceed to
reason about the consequences of the additional
knowledge. The consequences may include such
high-level notions as the mental state of the sender.
The important distinction here is that at least one of
the communicating parties is capable of reasoning.

It is important to note that for stretchability it is
sufficient to enable content-transfer. The additional
requirements implied by knowledge transfer,
especially that of mental state, are not necessary to
engage in useful communication. In fact, we submit,
that if we engender our agents with mental states,
then we endanger our prospects for honest,
purposeful communications. We further suggest that
a considerable amount of human language is
dedicated to the purposes of evasion and dishonesty,
with secondary importance placed on comforting our
kinsmen. The additional purpose of transferring
relevant information ranks far lower when
measuring the motivations for natural language
design. However, in the context of C2B, it is the
low-ranked goal of content-transfer that acquires
ultimate importance.

What we need then is a new content biased
language (CBL) that allows software agents to
successfully communicate details regarding their
requirements within a transaction. This new
language must achieve the following goals:

· Obtain agreement on the semantic meaning
of lexemes.

· Establish the unique identity of a referent.
· Represent any concept at any level of

granularity.
· Represent any relationships that may occur

between concepts, including relational, non-
relational, Cambridge, and comparative relations.

· Distinguish the use of the same concept in
different contexts without always discussing all
aspects of the concept and without losing the
importance of the specific context.

· Factor time and object evolution into the
model.

· Construct the scaffolding such that any model
of any physical-behavioral unit can be modified and
reused, including direct reference from any other
model of any other physical-behavioral unit.

· Enable a means of expressing the rationale or
intentions behind an individual’s decision to make
data accessible.

· Ensure that the description of intentions with
content is orthogonal to the content itself.

· Ensure that partial content is understood as a
subset of total content, and the functionality of an
agent is not inexorably halted when presented with
partial content.

5 CONTENT BIASED LANGUAGE
(CBL)

In general, a language is composed of two distinct
components, the vocabulary and the grammar. The
vocabulary defines the lexical elements of the
language, and the grammar defines the syntactical
rules for combining the elements. The semantics
implied by certain syntactically valid constructions
form yet another important dimension of language.
In the case of our content biased language, the
vocabulary will be referred to as an External Open
Ontological Type System (EOOTS). This follows
directly from the fact that the language will serve as
a type system but also has properties of an ontology.

When an agent receives a request-for-content, it
must understand what information the sender is
requesting. Likewise, when that agent sends back a
reply-with-content, the original sender must
understand the response. There are a number of
approaches that can be applied to achieve this goal.
The immediate solution is to create a standardized
content representation vocabulary that all
communicating agents must use. Note that a markup
language such as XML is not, in and of itself,
sufficient to achieve this goal. Simply because an
agent can utilize a standard XML parser to extract
the data from the XML document, does not imply
that the data points have any particular significance.
Thus, the problem we are trying to solve is not one
of simply parsing out the individual data values
within a message, but rather one of comprehending
the significance of those values - that significance is
conveyed by the semantic layer logically situated
atop the EOOTS.

The English language, or more accurately an
English Language Dictionary, may be considered a
repository of words. Each word represents one or
more concepts, as described by the definition of the
word, and made real by acceptance and use in
everyday dialog. In much the same way, the content

A CONTENT ORIENTED ARCHITECTURE FOR CONSUMER-TO-BUSINESS E-COMMERCE

19

biased language (CBL) described by the EOOTS can
be considered to have an underlying repository of
well-known concepts. This dictionary, or Global
Type Repository (GTR), represents the complete set
of concepts that are globally accepted as parts of the
language. The GTR (pronounced Gator) is
composed of a set of concept aggregates represented
using EOOTS. Based on this description, it should
be clear that a CBL is as much defined by its GTR
as English is defined by an English dictionary.
Furthermore, if two different GTRs were created
then two different CBLs would result (just as an
English Dictionary defines English and a Spanish
Dictionary defines Spanish).

When a new set of concepts needs to be added to
a CBL, those concepts will be represented using
EOOTS. Before those concepts are registered in the
GTR, they are called wild EOOTS. Wild EOOTS
are not part of a CBL, since they are not accessible
to anyone other than their creator. If the creator of
the wild EOOTS wishes to integrate his new
concepts into a CBL, he must register his wild
EOOTS with the GTR for that CBL. This process is
called “Sewing Your Wild EOOTS”. In designing a
representation for the EOOTS, the following
objectives must be considered.

· Public Standard - no requirement of a global

standardizing committee.
· Open Standard - open specification allowing

constituent system designers to freely add new
concepts to the language.

· User-Friendly - minimal thought required for
determining the appropriate positioning of the new
concept in the existing language structure.

· Self-Administering - unprompted self-
administration through a natural selection
mechanism.

· Explicit Relationships - clear representation
of a concept’s relationship to other concepts.

· Atomic Values - normalized, atomic data
values unambiguously representing a given concept.

· Single Source - all constituent systems map
their concepts to a central type repository rather than
to each other.

· Extensible References - concepts should be
given some means of referencing multiple, distinct
concepts when each of those concepts make sense in
the context of the concept, even if all referenced
concepts are not known beforehand.

· Differential Definition - some form of
content-sharing should be possible but should not be
limited to any particular relationship.

· Contextual Independence – the designation of
a concept, as well as its properties, are not affected

by the relationships in which the concept
participates.

· Perspective Support – a single concept should
support representation from many different
perspectives.

6 PERSPECTIVE DOMAIN
GRAPH: AN EOOTS
REPRESENTATION

An EOOTS model is a software-oriented structure
for encoding the communication metadata related to
a physical-behavioral unit (PBU), or more
specifically a granular partition corresponding to
some PBU. A Perspective Domain Graph (PDG)
represents a subset of the universe as seen from the
perspective of a PBU. The PDG encodes the
important details of a PBU in such a way that the
details can be easily utilized as topics of discourse.
A PDG is a directed acyclic graph (DAG) with four
node types:

1. Concept Node - Represents an identifiable
entity in the PBU.

2. Relationship Node - Specifies a relationship
between sets of concepts.

3. Reference Node - Used to refer to the
subjects or concepts that take part in some
relationship.

4. Subject Node – Used to express similarity
across a set of concepts.

Consider a simple example of car ownership
illustrated in Figure 1. In this PDG, two primary
concepts are identifiable, the car and the owner. For
this example, we will assume the owner is a person,
though that need not always be the case. On the
right hand side of the figure, a legend clearly
designates the different levels of the graph. The
source (root) node of a PDG is always a concept
node and is therefore situated in a concept level
(CL). Following all but the final concept level, there
will always appear a Relationship level (RL),
Reference level (XL), and Subject level (SL) in that
order. As expected, an RL only contains
relationship nodes, an XL contains only reference
nodes, and an SL contains only subject nodes.
Furthermore, the sequence of levels (CL, RL, XL,
SL) repeats as many times as necessary to represent
all required concepts. For this particular example,
the subject level is empty, but the dotted box
(explained later) shows where such nodes would
appear.

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

20

Figure 1: A Perspective Domain Graph

Edges in the graph are unlabeled. This is

because all relationships are expressed as nodes in
the relationship levels. In the case of Car-
Ownership, there is only one user-defined
relationship, <owns>. The <owns> relationship has
two reference nodes as children. Each reference
node is identified by a name and specifies the
content-type (discussed later) of its referent. Thus,
the <owns> relationship clearly relates an owner-
person to an owned-car. The <ctx> node is a special
relationship that is always present. In addition, there
is always one child reference node under the <ctx>
node for each concept at the following concept level.
The child reference nodes of <ctx> have no name
and no referent concept-type. The <ctx> node is
best explained by equating it to the phrase “in the
context of”. Thus, <person> in the context of <Car-
Ownership> accurately signifies the <person> node
in the graph.

7 THE CONTENT ORIENTED
ARCHITECTURE

It is useful to introduce the concept of a global
system. A global system is not developed by any
single entity; it is instead, a conglomeration of the
efforts of many autonomously functioning entities
and their implicit interactions. Another useful
concept is that of a constituent system, which could
be considered nothing more than a set of
components housed within the framework of the
global system. In general, a constituent system is
written by a single entity. If multiple entities are
involved in the development effort, it is assumed
they share close communication and common
goals. The system itself will be composed of many

components (modules) only a subset of which

will interact outside the context of the constituent
system (with other components of the global
system). The remaining components will serve to
provide the functionality we presently associate with
enterprise-based software. Thus, a constituent
system really has two separate sets of requirements.
The first set defines the business (or personal) needs
of the owner, while the second defines the level of
stretchability supported to enable interaction within
the global system. Somewhere in the middle there
may also be a translation layer used to marshal
information in and out.

 Applications built using SOAP, WSDL, and
UDDI often conform to what is called the Service-
Oriented Architecture (SOA). As illustrated in
Figure 2a, a system based on SOA has three major
components: the service registry, the service
consumer, and the service provider. The service
registry is usually realized as a UDDI operator node.
Service providers will register WSDL descriptions
of their services with the service registry. Later on,
service consumers will discover these services by
performing searches on the UDDI operator cloud.
Once a service is located, the service consumer will
extract the WSDL service description, including
both the service interface and service
implementation, and use it to generate code for
accessing the service. In almost all cases, the code
generation is performed at design time. This is
necessary since the service description requires a
human intellect to understand the required message
parameters and ensure that the service consumer’s
code provides the appropriate arguments to the
service provider’s interface. Any changes to the
service provider’s interface will require, in addition
to re-registration with the service registry, a

car

Car-Ownership

owns

owner
R(person)

owned
R(car)

person

ctx

R R

Concept

Relationship

Subject

Reference

Conceptcar

Car-Ownership

owns

owner
R(person)

owned
R(car)

person

ctx

R R

Concept

Relationship

Subject

Reference

Concept

A CONTENT ORIENTED ARCHITECTURE FOR CONSUMER-TO-BUSINESS E-COMMERCE

21

Figure 2:(a) Service-oriented architecture

(b) Content-oriented architecture
recompile (or redesign) at each service consumer’s
site.

To combat both the design time dependence and
interface fragility problems inherent in SOA, we
propose the Content-Oriented Architecture (COA)
illustrated in Figure 2b. The similarities between
SOA and COA are not accidental. SOA, and the
technologies used to support it, form the foundation
for COA. In COA, the service registry has been
replaced with a matchmaker. In addition, a new
component, the Global Type Repository, has been
added. The GTR will contain the specification of a
content biased language (CBL).

The service consumer and service provider have
been replaced with peer-to-peer constituent system
agents. This supports an important goal of C2B,
which is placing the consumer on equal footing with
the business. When the constituent system agents in
COA wish to communicate, they do so using the
CBL contained in the GTR. If the two agents speak
different dialects, then messages can be routed
through the matchmaker. Using cross-dialect
mappings (PDG mappings) from the GTR, the
matchmaker can provide a translation service to the
agents to increase the probability of a successful
communication.

Notice that some lines in Figures 2a and Figure
2b are dotted, while others are solid. The dotted
lines represent activities that occur at design time,
while the solid lines represent run-time actions.
Through the addition of the GTR, it is now possible
to make all activities supported by SOA function at
run-time. In this way, COA provides for a top layer
that is currently missing in the SOA hierarchy. The
comparison is illustrated in Figure 3. The acronym
CDL represents a technology called content

description language, which is an XML-based
representation of a PDG.

One final important point concerns the style of
interfaces in COA. Whereas an SOA interface is
generally composed of arbitrary, multiple argument
method calls, a COA interface could consist of a
fixed set of well-known single argument method
calls. A good analogy is human communication. A
human has only one set of ears (one interface) that
handles all audible communication. Once the
communication has entered the brain (agent), it is
dispatched to the appropriate handler based on the
message content. Thus the COA, and its associated
CBL, clearly represents a more flexible,
anthropomorphic model of software design. Now, if
an agent design is changed such that it requires
different information (different arguments), the
calling agent does not need to be recompiled.
Instead, the new callee version simply asks the caller
for the additional information. Given the existence
of a CBL, this request is unambiguous, and may
succeed though it had no previous precedent.
Furthermore, if the caller cannot immediately supply
the additional information, an ancillary GUI agent
could be spawned to solicit help from a human
operator.

Figure 3: Interop Stacks, Adapted from the UDDI
Technical White Paper [10]

U
D

D
I &

 W
SD

L

Matchmaker

Constituent
System

One

Constituent
System

Two

U
D

D
I

SOAP & WSDL

Global
Type

Repository

E
O

O
T

S

E
O

O
T

S

E
O

O
T

S

Service
Registry

Service
Consumer

Service
Provider

UDDI

U
D

D
I &

 W
SD

L

SOAP & WSDL

(a) (b)

Service Oriented Architecture

Content Oriented Architecture

U
D

D
I &

 W
SD

L

Matchmaker

Constituent
System

One

Constituent
System

Two

U
D

D
I

SOAP & WSDL

Global
Type

Repository

E
O

O
T

S

E
O

O
T

S

E
O

O
T

S

Service
Registry

Service
Consumer

Service
Provider

UDDI

U
D

D
I &

 W
SD

L

SOAP & WSDL

(a) (b)

Service Oriented Architecture

Content Oriented Architecture

SOA
Interop
Stack

Internet Protocols (HTTP, TCP/IP)

Endpoint Access Protocol (SOAP)

eXtensible Markup Language (XML)

COA
Interop
Stack

UDDI GTR and Matchmakers

Undefined Content Biased Communication (CDL)

SOA
Interop
Stack

Internet Protocols (HTTP, TCP/IP)

Endpoint Access Protocol (SOAP)

eXtensible Markup Language (XML)

COA
Interop
Stack

UDDI GTR and Matchmakers

Undefined Content Biased Communication (CDL)

ICEIS 2004 - SOFTWARE AGENTS AND INTERNET COMPUTING

22

8 CONCLUSIONS

The natural languages employed in human
communications represent the pinnacle of flexibility
and extensibility for the transfer of information.
Unfortunately, they are also often wrought with
problems of ambiguity and misinterpretation. Using
natural language as a basis, and remaining keenly
aware of its potential pitfalls, we have described a
new communication model based on what we have
termed content biased language (CBL). A CBL
consists of a well-defined set of concepts and is
capable of expressing relationships and properties of
those concepts. The representation of a CBL as a set
of EOOTS in a GTR enables extensibility and also
ensures flexibility as different dialects can be used
interchangeably through the creation of appropriate
mappings.

The requirements of a C2B system could be
satisfied with nothing less than the flexibility of
content biased communication. The sheer number
of potential subject areas, and the multitude of
possible, and meaningful communication patterns,
made it absolutely mandatory to establish a more
flexible, more stretchable form of content transfer.
This notion of stretchability, and in particular its
implications for content transfer, provided the
primary motivation for the ideas presented in this
paper. Once this underlying problem was identified,
the enabling research on perspective domain graphs,
external open ontological type systems, and
ultimately the content oriented architecture could be
developed. The introduction of the content oriented
architecture as the culmination of the research
helped to clearly relate the many facets of the
consumer-to-business problem and also served to
situate the topic clearly in the realm of cutting-edge
computer science research. The business of
eCommerce is the business of the future, and the
foundation of eCommerce will be stretchable COA
based systems.

REFERENCES

Brown, K., and Taylor, W., “Inktomi Acquires Online
Shopping Developer C2B Technologies,”
http://www.inktomi.com/ new/press/1998/c2b.html,
1998.

ECML.org., “Electronic Commerce Modeling Language:
Wallet/Merchant Test Form,”
http://www.ecml.org/wallet_test.html

Frantz, L., “Easy Money,” UPSIDE Today, Upside Media,
June 14, 1999.

Honeyman, P., “Digest of the First USENIX Workshop on
Electronic Commerce (EC 95),” New York, New

York,
http://www.usenix.org/publications/library/proceeding
s/ec95/digest.html, July 1995.

Livraghi, G., “B2B B2C C2C C2B,” off-line,
http://www.gandalf.it/offline/off26-en.htm, May 2000.

Power, C., “Digital Frontiers Electronic Commerce:
MasterCard, Visa, and Amex Spearhead Standard
Format For Digital Wallet Software,” American
Banker, pp. 19, 1999.

Smith, B., “Mereotopology: A Theory of Parts and
Boundaries,” Data and Knowledge Engineering, 20,
287-303, 1996.

Smith, B., “Objects and their Environments: From
Aristotle to Ecological Ontology,” Department of
Philosophy, University at Buffalo.

http://ontology.buffalo.edu/smith/articles/napflion.html#N
_1

UDDI.org.,”UDDI Technical White Paper,”
http://www.uddi.org/pubs/Iru_UDDI_Technical_Whit
e_Paper.pdf, September 2000.

A CONTENT ORIENTED ARCHITECTURE FOR CONSUMER-TO-BUSINESS E-COMMERCE

23

