
Securing Mobile Agent Based Tele-Assistance Systems

Sergio Pozo, Rafael. M. Gasca, and María Teresa Gómez

Department of Computer Languages and Systems
Faculty of Computer Engineering, University of Seville

Avda. Reina Mercedes S/N, 41012 Seville, Spain

Abstract. Nowadays the scientific community is trying to design new
techniques in the search for solving security problems in mobile agent
technology. There are now some industry initiatives for using agents in real
environments which need a solution for some of their security problems.
Companies offering assistive service are getting cost reduction due to tele-
assistive technologies. In this paper we present a proposal based on secure
tunnels to add confidentiality and integrity to any agent platform, present or
future, without making any changes to its source-code. Our system is currently
implemented and working as part of a complete mobile multi-agent system used
for tele-assistance. During our research we have also detected many other
problems regarding the tunnelling approach.

1 A new perspective of security in mobile multi-agent systems

There are a growing number of elderly people in Europe. Tele-assistive technologies
are getting a lot of importance in cost reduction for companies and public insurance.
Elderly community is also benefiting from a new era of comfort and additional
services, such as continuous monitoring, full-time contact with relatives, new
diversion services, etc. Relatives are also benefiting from this new kind of tele-
assistance that lets them be in close contact with insurance centers and their family.

As tele-assistive or tele-care technologies cope with personal data, there are even
specific laws about this data treatment. Depending on the data sensitiveness stored
and treated by the companies (public or private) they need to use different protection
technologies.

A relatively new approach to design and implement tele-care services is to use

mobile multi-agent technology. Different classes of agents may be used to perform a
large number of local and remote assistance and supervision tasks, such as sensorial
data collection, alarm notification, health conditions monitoring, etc.

This new paradigm has a lot of practically unresolved security-related problems.
Systems and users are exposed to access policy violations, communications integrity
and/or confidentiality, system crashes, information theft, information modifications,
etc. These problems and others added from the use of mobile agent technologies

Pozo S., M. Gasca R. and Teresa Gómez M. (2004).
Securing Mobile Agent Based Tele-Assistance Systems.
In Proceedings of the 1st International Workshop on Tele-Care and Collaborative Virtual Communities in Elderly Care, pages 63-72
DOI: 10.5220/0002666000630072
Copyright c© SciTePress

needs to be resolved before any mobile multi-agent system could be used for a tele-
care system, etc.
Since the very beginning of our research, our goal has been to provide a generic
method for the protection of agents and agent platforms in a production environment.
This solution needs to be deployable in current systems without further delays or new
research and with a minimal effort.

In this paper we present an alternative and working way of protecting agents and

platforms using existing tools and technologies in order to create secure tunnels. The
work is structured as follows: first we present a very brief introduction to current
threats of platforms and mobile agents and current theorical solutions to the problem
of mobility vs. security. Then we indicate the goals for our system architecture.
Finally we propose a secure tunnel alternative to securing communications. We finish
the paper indicating the conclussions and future work in this research line.

2 Current threats in mobile agent technology

There are several security threats in the agent paradigm (for both mobile and static
agents), which allows at least two classifications [1], depending on the type of threat
and on the entity of an agent environment which carries out an attack [1]. We have
stressed the importance of security implications in a tele-care environment.
 The most secure location for an agent is its home platform. Although neither agents
nor home platforms are invulnerable, a number of conventional techniques can be
applied to construct adequate defenses. Each time an agent migrates, there are
security risks, and so it is needed a way to transmit this trusted environment to other
platforms to which agents may travel. The greatest problem with multi-hop MAS is
just the trust relationship which can be established in single-hop MAS between two
platforms thanks to the security mechanisms derived from Client/Server architecture.
These trust relationships are not transitive, nor have they to be bilateral.

2.1. General considerations

There are some practical solutions for securing communications in multi-hop MAS,
but the vast majority of them include restrictions on itineraries. There are other
alternatives based on the usage of a transport level protocol (usually SSL) to secure
communications, and it has been applied with success to some agent platforms [2].
However, some of them are static MAS [3] and all solutions are directed towards a
specific MAS. For tele-care it is need a mobile MAS and no itinerary-restriction.

The design and implementation of the agent platform itself is also of great
importance. Java is a powerful language for implementing error-free MAS, but also
the design phase is decisive in an application security development cycle.

64

2.2 Securing platforms and agents

Existing protection ongoing researches can be divided into solutions for protecting
platforms and solutions for protecting agents [1].
Software-Based Fault Isolation [5], Safe Code Interpretation, State Appraisal [6], Path
Histories [7, 8], Proof Carrying Code [9] are current research lines for protecting
platforms and Partial Result Encapsulation, Execution Tracing [10], Environmental
Key Generation [11], Computing with Encrypted Functions [12], Obfuscated Code
[13] are for protecting agents.

3 Security goals for the architecture

We propose to divide protection techniques into three categories: protecting
platforms, protecting agents and protecting communications. Our work is focused in
the third category, providing no direct protection to platforms or agents themselves.
Our solution provides protection to the communication channel and platform
authentication between platforms. Our system also indirectly provides protection to
platforms, forming a secure agent community.

We were looking for a solution that provides integrity, confidentiality, data origin
authentication, mobile multi-agent system independence, compliance with standards,
existence of cryptographic acceleration hardware and cost-saving and reuse of
existing infrastructure.

Aglets [14] have been used for our reference implementation in the lab, since it is
Open Source, multiplatform, easy to develop, has strong mobility (maximum mobility
in a Java-coded MAS), high acceptance and relatively good documentation [15].

4 TLS, SSH2 and proprietary-protocol secure tunnels

Tunnelling is the capability of encapsulating one protocol within another, using this
second protocol to traverse network nodes. A secure tunnel is one which encapsulates
an insecure protocol (like FTP or HTTP) within a secure one (like SSL). Tunnels may
also be used to bypass firewalls and are vulnerable to denial of service attacks, since
they use a public and untrusted network as transmission media.

Due to the independence which the secure communications system must have from
any mobile MAS, research has focused on systems which generate application-
independent secure tunnels.

4.1. Stunnel

Stunnel [16] is an application which acts as SSLv3 server and/or client, providing a
secure SSL-based secure tunnel (wrapper) for insecure protocols or applications with
the only need of the installation of the application in each of the systems that needs to

65

secure. Stunnel is distributed under a GPL license and has versions for Microsoft
Windows, some flavors of UNIX and many other OS. Stunnel also supports
cryptographic accelerator hardware and client and server authentication with X.509
digital certificates (as SSL does).

The way Stunnel works is wrapping ports on the client and server systems (Fig. 1). It
wraps the port the real service has assigned at the server (e.g. 4000 in Aglets server to
another port, say 4001), and at clients it creates a local port the client service has to
communicate with to access the Aglets network service (say 4001). The client
connects to its 4001 local port. Then Stunnel wraps the connection and redirects the
request to the 4001 port on the server node, which is also a port wrapped by Stunnel.
The server-side Stunnel unwraps and redirects data to Aglets platform on port 4000
(which is usually blocked by a firewall to prevent direct external access).
Authentication (server and optionally client) also takes place in the process at the
beginning of the communication (like in whatever other SSL connection).

Fig. 1. Example Stunnel port-wrapping mechanism

In the case of a mobile MAS, the server and client ports are the ones where the mobile
agent platform resides, although in the agent paradigm does not exist the concept of
server and client, we will use them to refer to the platform where the agent dispatches,
that is the source or client platform, and the platform where the agent moves to
(destination or server platform). These roles of the platforms are always changing in
multi-hop mobile MAS, and are inverted from the natural ones of a typical
Client/Server architecture (Fig. 1)
A typical mobile multi-agent community can be modeled as some nodes that act as
home platforms for the vast majority of agents, and other nodes that play the role of
intermediate or visit nodes. The number of visit nodes is usually far bigger than the
number of home nodes in a typical multi-agent community. Although any node can
create an agent and become a home node, in real applications with multi-agent
systems, the community is usually divided into platforms that create the majority of
agents (sources) and other platforms that doesn’t create mobile agents (destinations).

We have detected some problems regarding Stunnel during our research with secure
tunnels. Stunnel features are summarized in Table 1. The most important ones are as
well discussed.

66

Table 1. Stunnel features
Feature Explanation Can be solved?

UDP tunneling Stunnel cannot wrap UDP protocol. No
Node

authentication
Stunnel uses digital certificates. A lot of
certificates need to be issued. N/A

Integrity
checking

As Stunnel uses SSL protocol, it also uses the
same mechanisms of data integrity. N/A

Port-range
mapping

Stunnel cannot map a range of ports in a
unique process. No

Tunnel dodging Problems with Stunnel and all protocol
wrappers in general. Yes

IP address
routing

When using IP addresses as basic
authentication mechanism and NAT servers. Yes

• Node authentication. A feature derived from using SSL is the need to use digital

certificates for node-authentication. At least a digital certificate needs to be used in
each destination platform. Client-authentication (source nodes) is optional in SSL.
 Another authentication problem is derived from the fact that the role of server
and client nodes are inverted from the natural ones of a typical Client/Server
architecture, where the lesser number of nodes are the servers (and are the only
ones that really needs digital certificates). With the Stunnel approach it is needed to
create at least a digital certificate for each destination node of a community;
furthermore as the role of each platform is always changing in multi-hop mobile
MAS, each node needs a digital certificate. That is not a big problem with small
communities, but with bigger or small but easily growing ones, it could be a strong
restriction, because we must maintain a community-restricted PKI, and deploy
strong authentication mechanisms for nodes to prevent tampering of certificates. A
beneficial collateral effect derived from the deployment of strong authentication
systems and PKI infrastructure is that no agent coming from external parties can be
injected in our community. It is a natural isolation mechanism.

Fig. 2. Multiple destination Stunnel setup

• Port mapping. Stunnel communication model have some problems regarding the
way it maps ports. Stunnel needs to map separate ports with separate IP addresses
for each destination platform in order to be able to establish the tunnels (that is, it
cannot map a range of ports or a range of IP addresses). One Stunnel process is
needed on each source platform (5Mb) for each destination to which the agents

67

may travel to. On a network with 2000 possible destinations, the RAM required on
the each source platform would become unfeasible (10,000 Mb of RAM, or 10Gb).
It should be taken into account that the source platform is always client (Fig. 2.)

 Another problem is that some agent platforms (such as Aglets) work on a fixed
but user-configurable port for agent migration, but it uses a random port from a
range for message transmission. Due to design restrictions of Stunnel, this actually
means having one Stunnel process for each possible messaging port, which is
totally unfeasible for the same reason as before (there could be 1000 ports in the
range, and each Stunnel process requires 5Mb). Multiply this quantity of needed
RAM to the one obtained from running one more Stunnel process for each possible
destination and you could easily need a Terabyte-capable system to run an
effective SSL-tunnelled mobile MAS in large communities.

• Tunnel dodging. Since Stunnel is external and transparent to the application which
uses it, when an agent is asked for a handler or proxy in order to be able to
reference it, the platform gives the address and port of the system where it is
residing. It does not give the port where Stunnel is located, but the real platform
port, and so the communication, if established, is going to be untrusted (bypassing
Stunnel). Some agent platforms provide a proxy mechanism to encapsulate its
transmission protocol in another protocol, creating a tunnel for it. This is the case
of Aglets, where it is possible to define an HTTP proxy (host and port) to use when
transferring agents. That is, Aglets encapsulates ATP over HTTP, and then HTTP
requests are encapsulated in SSL through Stunnel and transmitted.

• IP address routing. There is a problem related to private IP addresses, NAT servers
and some mobile MAS platforms (such as Aglets). This problem is not related to
tunneling itself but to specific agent platform design itself. If the mobile MAS
platforms have private IP addresses and are behind NAT servers, the agents need to
traverse that NAT server, which is going to change the IP address of the packets to
the one the NAT server has. Some mobile MAS hardcode the home platform IP of
the home platform in the agent on dispatch. This address is then compared with the
one of the packets arriving at the destination platform, and if it is not the same, the
agent will be discarded. This is a general problem with NAT and could not be
easily resolved because it depends on the design of each mobile MAS platform.
Some mobile MAS tries to resolve the hardcoded IP address of dispatched agent,
but if the address is in the private range it is not possible to resolve it unless there is
an available DNS server that has registered that private IP.

4.2 Secure Shell (SSH2)

SSH is a protocol for securing network services over an insecure network. It is
traditionally used for protecting insecure UNIX protocols such as telnet, rlogin, etc.
Moreover SSH can be used to secure other services creating a wrapper around them
using a local port redirection scheme very similar to the one used by Stunnel. SSH is
widely accepted by the scientific community as being a trusted security protocol.
 SSH architecture is very similar to SSL or TLS one, and provides basically the
same functionality. SSH can use different authentication schemes such as preshared
secret or digital signatures. It also uses Diffie-Hellman key agreement protocol (such

68

as TLS) and HMAC integrity hash. Different implementations of SSH protocol can
use different encryption algorithms. SSH features are summarized in Table 2.

 There are several implementations of SSH protocol, ranging from Open Source to
commercial ones and for a wide variety of operating systems. Although very similar
to Stunnel at protocol level and working way of OpenSSH implementation, this
application has been considered for its wide acceptation.

Table 2. SSH (OpenSSH) implementation features

Feature Explanation Can be solved?
UDP tunneling SSH doesn’t support UDP. No

Node
authentication

Stunnel uses digital certificates. A lot of
certificates need to be issued. N/A

Integrity
checking

SSH uses HMAC hashes. N/A

Port-range
mapping

OpenSSH cannot map a range of ports in a
unique process. No

Tunnel dodging Problems with SSH and all protocol wrappers
in general. Yes

IP address
routing

When using IP addresses as basic
authentication mechanism and NAT servers. Yes

4.3 Zebedee

Zebedee [18] is another Open Source application used to create secure tunnels with
implementations in Windows, UNIX, Linux, Java and Ruby. Zebedee (from its
documentation) has a small memory footprint and low wire protocol overhead.

Zebedee does not use SSL, but a plain Diffie-Hellman protocol for key agreement
and a symmetric key cryptographic algorithm, Blowfish. Zebedee does not provide
any features for data integrity.

In counterpart, Zebedee solves some of the design and implementation problems of
Stunnel, providing us with a more flexible way of creating tunnels. In exchange we
get a weak authentication mechanism and no integrity checking. Zebedee also
supports compression (through zlib and bzip2 libraries) with a selectable range of
speed and efficiency. It doesn’t support cryptographic acceleration hardware because
it isn’t based on standards.
• Tunneling of UDP protocol. Zebedee can be used to tunnel UDP protocols, but

even in UDP-mode the created secure tunnel uses TCP protocol to wrap it.
• Node authentication. Zebedee permits a sort of really weak identity checking

mechanism for authentication (it is not possible to use digital certificates for
authentication): one based on IP addresses, and the other based on the generation
of a private and permanent key, that is used (along with the modulus and generator
of the Diffie-Hellman phase) for the generation (usign a hash function not
specified) of a public fingerprint which needs to be copied in every Zebedee server
it needs to communicate with.

69

 As neither the private key nor the modulus and generator change, and although
Zebedee uses session keys that change regularly, this identity checking scheme is
vulnerable to known-plaintext attacks. Zebedee documentation also points that its
identity checking mechanism is also vulnerable to man-in-the-middle attacks.

• Port mapping. Zebedee can also map a range of IP addresses and ports for
destination platforms in only one process, thus releasing the huge RAM constraint
of Stunnel on big agent communities and the random port selection when sending
messages in some agent platforms, thus improving the maintenance of the
architecture.

Table 3. Zebedee features

Feature Explanation Can be solved?
UDP tunneling Zebedee uses TCP to wrap UDP protocol. N/A

Node
authentication

Really weak authentication scheme based on
IP addresses. No

Integrity
checking

Zebedee does not support any integrity
checking mechanism. No

Port-range
mapping

Zebedee can map a range of ports in a unique
process. N/A

Tunnel dodging Problems with Zebedee and all protocol
wrappers in general. Yes

IP address
routing

When using IP addresses as basic
authentication mechanism and NAT servers. Yes

In spite of its weak authentication mechanisms, this weakness can be used to simplify
security maintenance, as it doesn’t need any private secret to be permanently stored at
any platform (it should be remembered that key generation is automatic). Adding
nodes to the infrastructure is straightforward, simple and cost-effective, although very
insecure. A PKI isn’t needed this time, but the need of the DNS still remains.

The lack of standards supported by Zebedee, weak authentication mechanisms, lack
of integrity checking mechanisms, and the impossibility to resolve private IP address
routing make Zebedee a near-unusable alternative to Stunnel or SSH. Zebedee
features are summarized in Table 3.

4.4 Security and availability problems with TCP-based secure tunnels

In addition to the exposed problems in all secure tunnel architectures, whether it is a
SSL-based system or a proprietary one, there is another serious security and
availability problem related to all TCP-based tunneling systems.

The capability of inferring TCP sequence numbers (commonly named blind
spoofing attack) have been a fact for many years [19]. This can be used to inject
packets in an open TCP conversation or to send connection termination packets to one
or both parties, causing severe delays and in the end a DoS failure [17]. It is possible
to carry out the attack injecting packets from a third party before tunnel establishment
(although it is difficult to carry on a blind spoofing attack out of a LAN), since TCP-

70

based secure tunnels doesn’t authenticate TCP packets until the tunnel has been
established.

5 Conclusions and future research

Mobile multi-agent systems introduce a lot of security issues. Some of them are new
and others are very similar to client-server paradigm ones. The majority of the
solutions are directed towards a concrete mobile MAS or are rather theoretic. Mobile
MAS applications can be used nowadays by the industry in tele-care services, since
there are even commercial MAS platforms. But as programming languages are
becoming multiplatform, it is clearly needed multi-platform security solutions for at
least some of the security issues they have. A tele-care service is even more
restrictive.

We propose in this paper a new approach for protecting agent communications using
secure tunnels implemented using existing applications and protocols. We were
looking for a cheap, multi-platform and generic solution to several mobile MAS
platforms. This solution is easily applicable to any service, including tele-care ones.

Our work is focused on protecting communications, but also provides some
collateral effects that improve the protection of agents and platforms. Using a key
distribution scheme (i.e. a PKI) for our community, guarantees that only agent
platforms whose digital certificate have been signed by the certificate authority of the
community PKI can communicate with other platforms of the community.

Our solution provides privacy, integrity checking and a basic form of
authentication scheme that needs to be extended to be usable in a large production
environment. Our solution is also mobile MAS independent and very low cost.
Existing tele-care agent applications can obtain a direct benefit with very few or even
no modifications at all.

We have studied in depth the solutions that secure tunnel applications can provide

to existing agent platforms, using Aglets as the reference platform. During the study
new non-security related problems have also been detected (for example, routing of IP
addresses and authentication scheme of some agent platforms). Some of them have
been solved, but others are limitations of the applications that have been tested. There
are some other applications we have not tested (such as SSLWrap) because they
provide the same functionality to the ones that have been tested. We kept the most
representative and actual ones.

Since our solution is a preventive technology, it cannot provide predictive or
detection capabilities on its own. Neither human access control nor authentication has
been considered, since these issues are complex enough to dedicate its own research
efforts. These lines are areas for future research. There is also some room to research
in order to provide solutions to the new problems created by these secure wrappers, to
the ones that still remain after our solution, and finally for performance testing of the
proposed solutions.

71

References

1. W. Jansen, T. Karygiannis: Mobile Agent Security. NIST Special Publication 800-19,
October 1999.

2. L. M. Silva, P. Simoes, G. Soares, P. Martins, V. Batista, C. Renato, L. Almeida, N. Stohr:
JAMES: A Platform for Moble Agents for the Management of Telecommunication
Networks. Proceedings Intelligent Agents for Telecommunication Applications, IATA’99,
Stockholm, Sweden, August 1999.

3. A. Puliafito, O. Tomarchio: Design and Development of a Practical Security Model for
Mobile Agent System. 7th IEEE International Symposium on Computers and
Communications, ISCC’02.

4. S. Fischmeister, G. Vigna, R. A. Kemmerer : Evaluating the Security of Three Java-Based
Mobile Agent Systems. 5th IEEE International Conference on Mobile Agents (MA’01).
Atlanta, Georgia, USA, December 2001.

5. R. Wahbe, S. Lucco, T. Anderson: Efficient Software-Based Fault Isolation, October 1998.
6. W. Farmer, J. Guttman, V. Swarup: Security for Mobile Agents: Authentication and State

Appraisal. Proceedings of the 4th European Symposium on Research in Computer Security
(ESORICS), September 1996.

7. J. J. Ordille: When Agents Roam, Who Can You Trust? Proceedings of the First Conference
on Emerging Technologies and Applications in Communications, May 1996.

8. D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, G. Tsudik: Itinerant Agents for
Mobile Computing. IEEE Personal Communications, vol.2, no. 5, October 1995.

9. G. Necula, P. Lee: Safe Kernel Extensions Without Run-Time Checking. Proceedings of the
2nd Symposium on Operating System Design and Implementation (OSDI), October 1996.

10. G. Vigna: Protecting Mobile Agents Through Tracing. Proceedings of the 3rd ECOOP
Workshop on Mobile Object Systems, June 1997.

11. J. Riordan, B. Schneier: Environmental Key Generation Towards Clueless Agents. Mobile
Agents and Security, Springer-Verlag, Lecture Notes in Computer Science No. 1419, 1998.

12. T. Sander, C. Tschdin: Protecting Mobile Agents Against Malicious Hosts. Mobile Agents
and Security, Springer-Verlag, Lecture Notes in Computer Science No. 1419, 1998.

13. F. Hohl: Time Limited Blackbox Security: Protecting Mobile Agents From Malicious
Hosts. Mobile Agents and Security, Springer-Verlag, Lecture Notes in Computer Science
No. 1419, 1998.

14. D. B. Lange, M. Oshima: Programming and Deploying Java Mobile Agents with Aglets.
Addison-Wesley, 1998. ISBN 0-201-32582-9.

15. J. Altmann, F. Gruber, L. Klug, W. Stockner, E. Weippl: Using Mobile Agents in Real
World: A Survey and Evaluation of Agent Platforms. 5th International Conference on
Autonomous Agents, 2nd Workshop on Infrastructure for Agents, MAS, and Scalable MAS
at Autonomous Agents. Montreal, Canada, May 2001.

16. W. Wong: Stunnel: SSLing Internet Services Easily. SANS Institute, November 2001.
17. A. Pankratov: Trivial Denial of Service Attack against TCP-based VPN. Security Focus,

April 2003.
18. N. Rinsema: Secure (and free) IP Tunneling using Zebedee. SANS Institute, June 2001.
19. M. Zalewski: Strange Attractors and TCP/IP Sequence Number Analysis. BlindView

Corporation, 2001.

72

