
Auctions in mobile multihop ad-hoc
networks following the marketplace

communication pattern?

Hannes Frey, Daniel Görgen, Johannes K. Lehnert, and Peter Sturm

University of Trier
Department of Computer Science

54286 Trier, Germany

Abstract. This paper presents UbiBay, a self-organizing distributed auction
system using a mobile multihop ad-hoc network as its sole communication plat-
form. In order to substantially increase the probability that negotiating peers suc-
cessfully reach an agreement, communication is focused on a static geographic
area, called the marketplace. Users are not constrained to be at the marketplace
physically, but are allowed to utilize other ones mobile devices located at the mar-
ketplace to let a software agent negotiate with others on their behalf. The negoti-
ation protocols of UbiBay as well as a middleware architecture for applications
based on the marketplace metaphor are described in this work.

1 Introduction

Auction systems enable the exchange of goods on the basis of supply and demand. They
are central to any modern economy, e.g. in the form of stock exchanges. With the rise of
the pervasive world-wide web they are also used by millions of internet users in private
homes on a daily basis. The most prominent example of such an auction system is eBay.
Selling and buying goods at these online marketplaces is fairly easy. Offers are placed
by a seller with a starting price and a deadline several days ahead. Interested customers
vie with one another with increasing bids until the deadline is reached. The customer
with the highest bid wins and will buy the offered good. In order to reduce network
traffic and to relieve customers from the need to continuously monitor the auction 24
hours a day, software agents at the marketplace can be instructed to bid up to a given
limit automatically.

Auction systems for private users are a promising application domain for mobile
multihop ad-hoc networks if they are limited to a specific geographical area, e.g. a
small town, a suburb or the downtown area of a city. In these scenarios, mobile devices
such as smart phones, Pocket PCs and subnotebooks with wireless communication fa-
cilities form an ad-hoc network. Successful communication with a negotiating partner
several hops away is at least challenging or impossible in the end because of the dynam-
ics in such a system and the high probability for transient loss of messages. Therefore,
? This work is funded in part by DFG, Schwerpunktprogramm SPP1140 “Basissoftware für

selbstorganisierende Infrastrukturen für vernetzte mobile Systeme”.

Frey H., Görgen D., K. Lehnert J. and Sturm P. (2004).
Auctions in mobile multihop ad-hoc networks following the marketplace communication pattern.
In Proceedings of the 3rd International Workshop on Wireless Information Systems, pages 161-169
DOI: 10.5220/0002667901610169
Copyright c© SciTePress



self-organization is a prerequisite for any successful solution to mobile multihop ap-
plications. Additionally, these systems should exploit the broadcast facility inherent to
any wireless communication technique. In order to eliminate the imminent broadcast
storm problem [8], various solutions are proposed such as limiting the number of hops
a broadcast might take or narrowing the affected area by means of topological or geo-
graphical information.

A working solution for such applications is based on the marketplace metaphor [3].
A marketplace is a fixed geographical location where information is traded. Market-
places should be located where high device density can be expected. Client requests or
agents acting on behalf of the client travel to the marketplace by infecting promising
nearby devices. This decision to infect another device within communication range is
based primarily on the relative geographical positions of the device actually carrying
the agent, the candidate device, and the marketplace itself. When arriving at the mar-
ketplace, the agent searches for matching peers by periodically announcing the set of
requirements. These infrequent broadcasts are limited to a given perimeter around the
geographical center of the marketplace. Hosting devices are changed if they are going
to leave the marketplace. At a given deadline or if a sufficient number of matching peers
is found, the successful agent will travel back to the coordinates of its homezone to find
the initiator’s device. Figure 1 depicts a simple marketplace example. The requirements

��

��

��

��

�	


�

�


��

����

��

��

��

��

��

��

 !

"#

$%

&'

()(*

+,

Fig. 1. A simple marketplace example with one marketplace in the middle and four user home-
zones. One agent tries to reach the marketplace, another one tries to reach its homezone. Two
agents are matching peers and communicate with each other. The dashed lines depict the current
network partitions.

of an auction system limited to a given geographical area match the characteristics of a
self-organizing system structure with the marketplace approach as the primary commu-
nication pattern. First of all, since auctions typically last for several days, the induced
latency imposed by communication between network partitions can be tolerated. Ad-
ditionally, information about offered goods and the actual price should be available to
any resident or visitor since these are the potential customers. Thus, the marketplace
communication pattern is a perfect fit for most of the communication requirements in
an auction system.

The task of securing the auction system is subject of ongoing work, but is beyond
the scope of the paper. In particular, possible attacks like willful agent deletion, faked
auctions or message replay will be regarded in future work. However, the auction plat-

162



form is intended for low value goods, thus security is not an important issue at the
moment.

In the following section UbiBay, an auction system for mobile ad-hoc networks us-
ing the marketplace communication pattern is described in detail. Section 3 gives a short
overview of the middleware platform used to implement the presented marketplace-
based UbiBay. In section 4 the implementation of UbiBay using a uniform workbench
is described. Finally, the current and future work is pointed out.

2 UbiBay

The task of UbiBay is to realize a mobile auction system solely based on mobile de-
vices with wireless communication capabilities forming a large scale multihop ad-hoc
network. UbiBay uses the marketplace communication pattern to increase the proba-
bility that auctioneers and bidders find each others. Marketplaces are used as regions
were auctions can take place. Auctions are not controlled by the users directly but by
the auction agents acting on behalf of them. Users interested in auctions must retrieve
information on running auctions by sending a discovery agent to the marketplace first.
Thereafter they are able to send out a bid agent, to represent their biddings at the mar-
ketplace.

2.1 Auction agent

An auction at a marketplace is represented by an auction agent. It provides all relevant
auction information such as product description, product category, minimum bid and
auction end. It is also responsible for the actual auction process: the handling of bids,
informing about outbidding and finally informing the winner of the auction. A simpli-

TaggedDuplicatedStart

MoveTo Auctioning FinishAuction MoveBackSuccess

FinishMoveBackNoBid

Fig. 2. Lifecycle of an auction agent

fied lifecycle of an auction agent is depicted in figure 2. The user starts an auction by
creating an auction agent, providing it with all necessary auction information. The agent
searches for an appropriate marketplace with the aid of the marketplace localization ser-
vice, provided by the middleware platform. After reaching the marketplace by using the
agent movement service, the agent changes to the auctioning state. In this state it is able
to answer discovery requests by replying with its auction description information and
to accept bids. Incoming bids with a higher value than the current bid are accepted and
granted, lower or equal bids are refused. At the end of the auction, the auction agent
moves to its homezone and waits for its user. After it has jumped to its user’s device the
agent informs the user about the result of the auction.

163



Since agent duplications are possible (see agent transmission protocol in section 3),
all agents must take care about that. The transmission protocol ensures that the agent is
informed and tagged when a duplication possibly has occured. A tagged auction agent
does not accept bids immediately. After it has entered (or reentered) the marketplace it
must first search for other duplicates. When it does not detect any other duplicates at
the marketplace, it is allowed to switch to auctioning state. In the case that it detects
an already active duplicate it deletes itself. When two or more duplicates search at the
same time, one of them is elected by using the highest current device id.

It is possible that no marketplace for the UbiBay application exists. In that case
the newly created auction agent must create a new marketplace. Applicable regions for
marketplaces are provided by the agent platform. The agent chooses one, moves to this
region and propagates this marketplace with aid of the marketplace localization service
described in section 3.

2.2 Discovery agent

Users interested in auctions must find out about the currently running auctions. To min-
imize the amount of retrieved auctions and the duration of the discovery procedure,
the user is able to specify the product categories, product specification and the auction
related basic conditions like latest or earliest end time or the minimum (current) bid.

The agent collects information about all auctions matching its premises for a given
time by asking all auction agents at the marketplace. After moving back to its homezone
and jumping to its user’s device it transfers all the collected information to the user. The
user is now able to choose auctions to take part in.

Duplications due to message loss must not be considered due to the fact that this
type of agent does not make any agreement with other agents. Nevertheless, duplicate
detection can be used to reduce the amount of agents.

2.3 Bid agent

In order to participate in an auction, the user creates an agent that bids on behalf of
him. He must specify his maximum bid, the height of each bid step the agent is able to
increase the current bid.

The bid agent moves to the marketplace and places bids until one of its bids is
accepted by the auction agent or its maximum bid is reached. If the agent’s maximum
bid is reached, it moves back to its homezone to inform the user that he has currently
lost the auction. Otherwise, it stays at the marketplace and continues bidding if another
agent places a higher bid.

The agent with the highest bid at the end of the auction is informed by the auction
agent. The bid agent replies to this notification and leaves the marketplace after a short
waiting time. This waiting time is needed to avoid unresolved message loss at the end
of the auction. Thus, the auction agent is able to repeat the message that informs the
winner until the winner replies.

Duplicated bid agents should not outbid themselves. Bid agents tagged as possibly
duplicated must search for duplicates like the auction agents after entering or reentering
the marketplace.

164



3 Marketplace platform

The UbiBay application uses the marketplace communication pattern to bring offers
and bids together and allow self-organized auctions. Instead of directly implementing
the marketplace pattern in the UbiBay application, a middleware platform for applica-
tions in mobile multihop ad-hoc networks is used. This middleware platform provides
the application with all services needed to use the marketplace pattern.The remainder
of this section will discuss the architecture and services of the middleware used by
UbiBay.

Hardware abstraction: The foundation of the middleware is a hardware abstraction
layer to unify access to basic operating system parts, to positioning, wireless communi-
cation and device discovery.

Agent movement: Agents use the agent movement service to reach specific places
like marketplaces or homezones. The agent defines its target and the movement service
ensures that the agent reaches its destination. When the agent arrives at the target, it is
informed by the movement service.

The agent movement service transports the agent to its target by transfering the
agent to other devices repeatedly. Suitable hosts are selected by a position-based greedy
routing algorithm [6]. The actual transfer of the agent to the selected device is handled
by the agent transport protocol. When the agent has reached its destination, the move-
ment system informs the agent and ensures that it stays there until a new target is set.

The way back to the homezone works similarly. The movement service transports
the agent back to its homezone. At the homezone, the owner’s device is searched using
a geographically limited broadcast. When the owner’s device is to far away from its
homezone, it leaves a link to its current position. After the owner’s device is reached,
the agent is informed by the movement service.

Agent transmission protocol: Whenever the agent movement service decides to move
an agent from one device to another, the agent transmission protocol is used. Due to
device mobility and wireless transmission, a reliable communication channel between
two devices cannot be assumed. On the other hand agents should not be lost during
transmission. The agent transmission protocol solves this dilemma by tolerating agent
duplication. The sender keeps a copy of the agent when sending it to another device.
Both copies are marked as possibly duplicated. If all protocol messages are correctly
acknowledged, the sender deletes its copy and the receiver removes the duplicate marker
from its copy. Otherwise, the protocol guarantees that at least one copy of the agent
exists. An agent is always marked when a duplication occurs, while the opposite does
not necessarily hold.

Duplicated agents may cause problems at the marketplace when they make different
agreements. Thus, upon arrival at the marketplace a duplicate elimination procedure is
started for agents marked as potential duplicates

165



Communication at marketplaces: Due to the limited size of the marketplace, com-
munication at marketplaces commonly involves a few hops only. The higher density of
devices at the marketplace makes communication more reliable. All the communication
takes place between agents not devices, since the agents might change devices during
the communication. The middleware provides two kinds of communication at the mar-
ketplace: a marketplace-wide broadcast and a unicast addressing a specific agent.

The marketplace-wide broadcast is a geographically limited broadcast: messages
are forwarded within the borders of the marketplace only. Therefore the marketplace
broadcast causes no additional network load outside of the marketplace area. The net-
work load inside of the marketplace area is further reduced by using a neighbor knowl-
edge broadcast [11]. This special kind of broadcast uses only a subset of all devices to
distribute a message to every device at the marketplace.

Unicasts addressing specific agents use topology-based source routing [10]. The
routes commonly result from agents looking for other agents but can be explicitly built
with marketplace-wide discovery broadcasts.

Marketplace localization: The marketplace localization service helps agents to find
their corresponding marketplaces. It disseminates information on marketplace positions
and applications running on them over the complete ad-hoc network. In order to avoid
redundant information exchange, devices exchange hash values of their marketplace
information first. Only if hash values differ, the real information is exchanged and up-
dated.

Distributed map computation: Marketplaces should be placed in areas where a high
density of mobile devices can be expected. Thus, an agent creating a new marketplace
needs to know about the hotspots of the ad-hoc network, i.e. places with high device
density. This is achieved by the distributed map computation service.

The area covered by the ad-hoc network is divided in small grids. Each device per-
manently updates the number of devices being in the grid where it is located. Addi-
tionally, it periodically broadcasts its current map state to all neighbors and listens for
incoming map states. Incoming map states are averaged with locally existing states.

4 Testing UbiBay in a workbench environment

The design and implementation of UbiBay and the middleware platform follows a three-
tier development principle consisting of simulation, emulation and testing in a real en-
vironment. A Java-based uniform workbench [2] especially designed for implementing
applications for mobile multihop ad-hoc networks, supports this design pattern. Code
reuse is the main advantage of this framework compared to other tools specialized for
only one of the design steps. It turned out to be of high value to implement parts of the
middleware once and test them in simulation, emulation and execution on real devices.
The first version of middleware components were put into practice in the simulation
part of the workbench. Repeatability of simulation experiments, fast forwarding, man-
aging of thousands devices, and finally rich but simple visualization abstractions proved

166



Fig. 3. Ubibay prototype with graphical user interface and visualization of the global simulation
state.

to be of high value for getting a better insight into the concept of marketplaces. During
the design of UbiBay the problem arose when timeouts set by the agent occured dur-
ing the absence from its marketplace. An early implementation used the notification
mechanism of the middleware platform, in order to register as a listener for the event of
leaving or reentering its designated geographic region. Thus, processing of timer events
and also incoming messages is done in the context of the current agent state (inside or
outside of the marketplace). It turned out that application complexity can be reduced
significantly by providing a mechanism to handle this problem by the platform itself.
Concerning this, the middleware platform defers (or ignores) processing of timer events
and delivering of messages until the agent can be placed back to its marketplace.

Using the emulative environment allows to test UbiBay with real user interaction
on real devices connected to a simulation with a high number of simulated devices.
In particular, the GUI development process benefits of this approach as an intermediate
step before testing the application in the real environment. But also the other application
parts were improved in this development step.

Up to now only a few devices were used to test UbiBay in the real environment as a
proof of concept. Lager field trials are scheduled for the nearer future.

The marketplace communication pattern has been tested and evaluated within the
simualtion environment. The evaluation results as turnaround time, agent duplication
rate etc. with simple agreement protocols has been published in [3]. For applications
like UbiBay a much more complex simulated user behavior is needed for simualtive
evaluation. At the moment only simple user behavior is implemented.

167



5 Related work

In general, permanent network partitions are inherent to large scale ad-hoc networks,
which prevents the provision of transparent end to end communication. This shows
the necessity of new communication paradigms like the marketplace-based approach
[3] followed by UbiBay and the underlying middleware platform. Communication
on marketplaces does not suffer from these problems, since marketplaces define small
subsets of the entire ad-hoc network.

An increasing number of middleware systems is developed specifically for mo-
bile ad-hoc networks. Lime[9] and L2imbo[1] are based on the idea of tuple-spaces,
which they share between neighbored nodes. But due to the coupling of nodes, these
approaches are not well-suited for highly mobile multihop ad-hoc networks. MESH-
Mdl[4] employs the idea of tuple-spaces as well, but avoids coupling of nodes by using
mobile agents, which communicate with each other using the local tuple-space of the
agent platform. Proem[5] provides a peer-to-peer computing platform for mobile ad-hoc
networks. STEAM[7] limits the delivery of events to geographic regions around the
sender which is similar to the geographically bound communication at marketplaces.
STEAM provides no long distance communication, it is only possible to receive events
over a distance of a few hops.

Adaptations and extensions [10] of classical topology-based routing protocols known
from static networks are coping with the problem of permanent link failures due to de-
vice mobility. However, these routing protocols will only deliver any packet, if at least
sometimes there is a path from source to destination over one or more wireless links.
Related to the communication pattern used by UbiBay, these protocols are applicable
for communication inside a marketplace, since the network topology at a marketplace
tends to be unpartitioned.

Another class of routing protocols is based on position information [6]. Similar to
topology-based routing protocols, the objective are unpartitioned networks. Using po-
sition information is an attractive way to avoid communication overhead caused by
maintaining routing information. In the marketplace communication pattern such pro-
tocols can be used to move agents within a network partition towards their destination.
However, these protocols also assume that there exists a path from source to destination
and have to be extented to protocols using device mobility as an additional message
transport mechanism.

6 Conclusion and further work

This paper presents a working solution for auctions in mobile environments. The mo-
bile auction system UbiBay uses solely mobile devices forming a large scale multihop
ad-hoc network. This is achieved by a communication pattern based on the market-
place metaphor. Marketplace-based communication perfectly fits for non time critical
applications in mobile multihop ad-hoc networks.

UbiBay and all necessary parts of the used middleware platform have been imple-
mented both in a simulation environment and on real hardware. First tests with Pocket-
PCs and notebooks using IEEE802.11b and GPS have been successfully carried out.

168



The presented components of the middleware platform are sufficient for UbiBay.
Besides UbiBay also other applications like electronic ride boards and self-organized
learning platforms are considered as applications using the presented middleware plat-
form. Thus, many other features, like load balancing for marketplaces, are implemented
or planned. Finally, more extensive field trials with UbiBay on real hardware are sched-
uled for the near future.

References

1. N. Davies, A. Friday, S. P. Wade, and G. S. Blair. L2imbo: A distributed systems platform
for mobile computing. ACM Mobile Networks and Applications (MONET) - Special Issue
on Protocols and Software Paradigms of Mobile Networks, 3(2):143–156, August 1998.

2. Hannes Frey, Daniel Görgen, Johannes K. Lehnert, and Peter Sturm. A java-based uniform
workbench for simulating and executing distributed mobile applications. In Proceedings of
FIDJI 2003 International Workshop on scientific engineering of distributed Java applica-
tions, 2003.

3. D. Görgen, H. Frey, J.K. Lehnert, and P. Sturm. Marketplaces as communication patterns in
mobile ad-hoc networks. In Kommunikation in Verteilten Systemen (KiVS), 2003.

4. Klaus Herrmann. MESHMdl - A Middleware for Self-Organization in Ad hoc Networks. In
Proceedings of the 1st International Workshop on Mobile Distributed Computing (MDC’03),
May 19 2003.

5. Gerd Kortuem. Proem: a middleware platform for mobile peer-to-peer computing. ACM
SIGMOBILE Mobile Computing and Communications Review, 6(4):62–64, 2002.

6. M. Mauve, J. Widemer, and H. Hartenstein. A survey on position-based routing in mobile
ad-hoc networks. IEEE Network Magazine, 15(6):30–39, 2001.

7. Ren Meier and Vinny Cahill. STEAM: Event-based middleware for wireless ad hoc net-
works. In 22nd International Conference on Distributed Computing Systems Workshops
(ICDCSW ’02), Vienna, Austria, July 2002.

8. S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu. The broadcast storm problem in a mobile ad
hoc network. Proc. of the 5th ACM/IEEE Int. Conf. on Mobile Computing and Networking,
pages 151–162, 1999.

9. Gian Pietro Picco, Amy L. Murphy, and Gruia-Catalin Roman. LIME: Linda meets mobility.
In International Conference on Software Engineering, pages 368–377, 1999.

10. Elizabeth M. Royer and Chai-Keong Toh. A review of current routing protocols for ad-hoc
mobile wireless networks. IEEE Personal Communications, pages 46–55, April 1999.

11. B. Williams and T. Camp. Comparison of broadcasting techniques for mobile ad hoc net-
works. In Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking
and Computing (MOBIHOC), pages 194–205, 2002.

169


