
A Web-Service Based Architecture for the
Inter-Organizational Coordination of Activities

Rainer Schmidt

Department of Computer Science, University of Applied Sciences
Beethovenstraße 1, 73430 Aalen, Germany

Abstract: To support open process networks and virtual enterprises, activities
have to be coordinated not only within an organization, but also between or-
ganizations. This inter-organizational coordination of activities creates new re-
quirements, not met by existing architectures. Therefore, a new coordination
architecture based on web services is developed. It uses a homogeneous and
dynamic composition of so called aspect-elements to support the inter-
organizational coordination of activities. The coordination architecture provides
coordination autonomy and knowledge encapsulation and offers both process
evolution and scalability. At the same time, the benefits provided by web ser-
vices such as service autarchy, service extensibility, service integration and
asynchronous service evolution are maintained.

1 Introduction

Today, enterprises must be able to quickly establish partnerships with other enter-
prises to combine their competencies and to provide complete solutions to the cus-
tomer. Examples are open process networks [SeDH01] and virtual enterprises. Such
partnerships require the coordination of a multitude of activities across organizational
boundaries. Furthermore, the participating enterprises may be others than in the part-
nerships before und may be others than in the next partnership: there is a high fluc-
tuation of partners. This permanent building and dismantling of partnerships is the
key feature of the inter-organizational coordination of activities. Therefore, inter-
organizational coordination of activities creates new requirements not met by existing
coordination architectures. New activities have to be integrated and existing ones
abandoned to reflect changing partnerships. Centralized architectures which endanger
the autonomy in defining and executing activities are no more feasible. Distributed
services to support the activities have to be integrated in a heterogeneous environ-
ment. Enactment architectures which require the synchronous evolution of services
are no longer suitable, because there is no central control of service evolution.

Web services [W3WS] offer huge potential benefits for the inter-organizational
coordination of activities. They facilitate the use of services across organizational
boundaries, hiding different implementation infrastructures, application architectures,
programming paradigms and languages. Web service brokers facilitate the integration
of services not known before. However, there is no coordination architecture which

Schmidt R. (2004).
A Web-Service Based Architecture for the Inter-Organizational Coordination of Activities.
In Proceedings of the 1st International Workshop on Computer Supported Activity Coordination, pages 211-226
DOI: 10.5220/0002680002110226
Copyright c© SciTePress

fully maintains the advantages of web services and fulfils the requirements of inter-
organizational activity coordination. Therefore, this paper will develop such a coordi-
nation architecture based on the so-called aspect-element-oriented schema representa-
tion and proceeds as follows. In Section 2, the requirements for the inter-
organizational coordination of activities are identified. Section 3 identifies the contri-
butions of web services to the inter-organizational coordination of activities. Section
4 is dedicated to the evaluation of related research. In Section 5, the coordination
architecture, the so-called aspect-element-oriented schema representation is intro-
duced. It is implemented in Section 6 as a so-called composite application, using web
services.

2 Requirements for the coordination of inter-organizational
activities

To clarify the new and augmented requirements created by the inter-organizational
coordination of activities, the scenario visualized in Figure 1 is introduced. The sce-
nario describes a company for mechanical engineering and a company for the produc-
tion of electronic control systems which combine their core competencies. They cre-
ate a virtual enterprise to gain mutual benefits: The mechanical engineering company
profits from making their products more “intelligent” by the integration of electronic
control systems. The company for the production of electronic control systems gains
access to new markets.

Order
entry

Check for
mechanical
correctness

Check for
control system

correctness

Check
credibility

Calculate
delivery

date

Confirm
order

Query
rating system

Query
logistics system

Logistics provider

Rating agency

Representation
office

Control systems
company

Mechanical
engineering

company

Common process

Sub-process

Service
Figure 1: Scenario for the inter-organizational coordination of activities

The activities needed for order processing are shown in Figure 1. Different activi-
ties are executed by different enterprises. Services are associated to each activity to
support them. These services may reside in other enterprises that the one executing
the activity. Examples are the services needed for checking the credibility or calculat-
ing the delivery date.

212

The order processing starts with the order entry. As both companies do not have
huge financial resources they rely on representation offices to acquire orders. One of
these representation offices is shown. Orders acquired by the representation office are
sent to both companies to verify the technical correctness of the order both under
mechanical engineering and control systems aspects. Then an external rating agency
is consulted to verify the customer’s credibility. This is done by querying the rating
agencies rating system. The delivery date is calculated by querying the logistics sys-
tem of a logistics provider, who is responsible for delivery. Finally, an order confir-
mation is sent out (Possible exceptions such as lacking credibility are covered in a
later section). Illustrated by the scenario, the requirements for the inter-organizational
coordination of activities can be identified.

• Coordination autonomy

Coordination autonomy is defined as the capability to autonomously coordinate ac-
tivities. As the participating organizations change quickly, all participants must be
able to leave the partnership without loosing the capability to coordinate their activi-
ties and they must be able to integrate quickly into a new partnership. Coordination
autonomy implies that all participants keep control over their coordination mecha-
nism. Therefore, using a centralized mechanism violates coordination autonomy. If
the enterprise owning the centralized coordination mechanism leaves the partnership,
the other participants loose their capability to coordinate their activities. Furthermore,
partners who do not own coordination mechanisms are forced to stay in the partner-
ship.

In the scenario, coordination autonomy would be lost by using a centralized coor-
dination mechanism installed at the mechanical engineering company. Then, the con-
trol systems company is not able to switch to another partner, as it would loose activ-
ity coordination.

• Process evolution

The inter-organizational coordination of activities is subject to more changes than
the intra-organizational coordination. There are more sources for change requests
compared to an isolated environment. These changes can be described as (business)
process evolution. It can be differentiated into (business process) model, schema and
instance evolution, according to the abstraction layer of the change request.

On the business process model layer the business process model defines a set of
elements to represent the activities of the business process and rules how to combine
these elements. A business process model can be seen as a kind of language descrip-
tion containing words and a grammar. In most cases the “language” consists of
graphical elements and rules for their connection. Changes on the business process
model, the so-called business process model evolution, imply the introduction of new
modelling elements or rules. They may also imply the integration of new services.
The integration of services will be discussed in the section service extensibility and
integration.

On the business process schema layer, the “real” business process is formalized as
business process schema (or schema for short) using the elements and rules of the
business process model. The schema describes the activities of the business process
and defines allowed paths for the execution of the activities. It defines the sequence
of activities to be executed in the business process and rules for executing activities

213

dependent on preconditions. For example, the schema of an order processing defines
the activities to be performed to process the order and rules like “Reject the order if
the ordered product is out of production”. The requirement to implement changes on
the business process schema layer is called (business process) schema evolution. A
typical example of schema evolution is the rearrangement of activities such as execut-
ing two activities in parallel which were performed sequentially before.

On the third layer, the business process instance layer, the process schema is used
as template for creating business process instances. Business process instances (or
instances for short) represent the concrete processing of an order, e.g. the processing
of order number 4711. Instance evolution means, that the execution of one or more
instances shall deviate from the execution originally specified in the business process
schema.

• Knowledge encapsulation

Knowledge encapsulation is necessary to protect the knowledge about proper ac-
tivity coordination, which is a decisive competitive factor. Due to the short lifetime of
partnerships, the knowledge how to coordinate activities has to be kept secret from
partners, which may soon participate in competing partnerships. Furthermore, an
enterprise may participate in multiple partnerships with companies which are com-
petitors among themselves. Then, these enterprises will attach great importance to the
protection of their coordination design.

Knowledge encapsulation is also necessary to make changes manageable. The in-
ter-organizational coordination of activities may have a large extent and involve a
multitude of enterprises. Therefore, changes in one company should affect the global
process as little as possible: Encapsulation impedes the emergence of cascading
change request.

• Scalability

The creation of new partnerships implies the coordination of new and additional
activities. Furthermore, in order to react to market changes it must be possible to
quickly fulfill an increased demand of products. Therefore an architecture for the
inter-organizational coordination of activities must be highly scalable.

• Service autarchy

Service autarchy is defined as the capability to integrate and use independently
services. Service autarchy is necessary to cope with business partner fluctuation typi-
cal for inter-organizational activity coordination. Only if it is possible to quickly
change the provider of a service, a quick adaptation to changing partners is possible.
Services autarchy requires the direct access to services without using an intermediary.
For examples, if an Enterprise Application Integration (EAI)-system was installed at
the mechanical engineering company services provided by the rating agency and the
logistics provider could not be directly accessed. This is fatal, if the control systems
company tries to switch to another partner. In this case, it would loose access to the
services.

• Service extensibility and integration

Above, process evolution has been identified as an important requirement. Process
evolution implies that the set of services necessary to execute activities is highly

214

dynamic: New services have to be integrated due to changes to the activities. There-
fore, an architecture for inter-organizational activity coordination must be capable of
integrating new and services not known before. The services may be highly distrib-
uted and heterogeneous because different organizations use different infrastructures.
In the scenario, service extensibility and integration provides the possibility to
quickly and transparently switch from the service s2 provide by the old logistics pro-
vider to the service s3 provided by the new logistics service provider. This service s3
may be implemented in a totally different way as s2.

• Asynchronous service evolution

When coordinating activities across organizations, the underlying services may
evolve asynchronously. There is no orchestrated evolution of services. In the sce-
nario, for example, the rating agency could introduce new and enhanced versions of
its rating service s1 called s1’. This should not influence the established activities
anyway.

In summary, the requirements for the inter-organizational coordination of activities
can be divided into two groups. Coordination autonomy, process evolution, knowl-
edge encapsulation and scalability are coordination oriented requirements. The sec-
ond group are service-oriented requirements: Service autarchy, service extensibility
and integration and asynchronous service evolution.

3 Web services and their contributions

Web Services [W3WS], [GrSi02] provide the universal and transparent access to
asynchronously evolving services in heterogeneous environments by using near ubiq-
uitous internet technologies such as HTTP [W3C] and XML [XML]. Service requests
and responses are encapsulated into XML-documents following the SOAP specifica-
tion [W3C]. Web services can be described using WSDL [WSDL]. Furthermore, web
services provide discovery mechanisms such as UDDI [UDDI] to clients. They allow
clients to find services, not known till then. There are coordination related extensions
such as the Business Process Execution Language for Web Services (BPEL4WS)
[BPEL]. BPEL4WS allows to specify business processes and to define the web ser-
vices to be used for executing the specified business process [LeRo02]. BPEL4WS is
a language definition which provides a set of elements and rules to describe business
processes. It can be thought of as business process model, but it does not define an
enactment architecture. A design methodology for web services and business proc-
esses in general is introduced in [PaYa02]. A detailed framework for services is de-
fined in [BCGL02].

The survey of contributions of web services to the inter-organizational coordina-
tion of activities will focus on the service-oriented requirements. Service autarchy is
defined as the capability to associate independently services to support the activities.
This requirement is fulfilled by web services, because they provide universal access
to services. Web services allow integrating services individually and in a peer-to-peer
architecture. There is no need for a centralized integration engine such as used in
EAI. They also fulfil the requirement of service extensibility and integration because
they allow to transparently integrating services across heterogeneous platforms. Fur-
thermore discovery mechanisms such as UDDI allow to integrate up to then unknown

215

services and extent the set of available services. The name space concept of web
services, already introduced with XML [XML] establishes a decentralized versioning
mechanism: Different versions of a web service can be differentiated by different
name spaces. Therefore web services fulfil also the requirement of asynchronous
evolution of services.

4 Related research

The CrossFlow project [CROS] developed concepts to support the creation of virtual
enterprises by outsourcing activities to other enterprises. The outsourcing is based on
contracts which specify the services to be provided. CrossFlow provides an architec-
ture to make and enact these contracts. A virtual market provides mechanisms for
matching service requests and offers. Furthermore the configuration of the enactment
infrastructure and service monitoring and control is provided. In [AALS2] Message
Sequence Charts and Petri Nets are suggested for the specification and verification of
inter-organizational coordination of activities. The focus of this approach is to verify
the consistence between inter-organizational business process and message sequence
charts. In [MPSK98] a dynamic workflow model is developed. Furthermore concepts
for the management of web services are proposed and detailed in [MSLH02]. How-
ever, no special enactment architecture is proposed. The WISE project [LASS00]
developed concepts for the inter-organizational coordination of activities called vir-
tual business processes. Core of the WISE architecture is a centralized engine inter-
preting the business process schema. It offers also load-balancing, recovery and
monitoring mechanisms. The eFlow platform [CaIJ00] provides the composition of
services and their adaptation to changes such as the introduction of new services. The
dynamic composition of services is addressed in the DySCO approach [PiFW03]. The
modeling, composition and execution of services are the aim of the FRISCO project
[PiZW03]. Both eFlow, DySCO and FRISCO, however, do not provide an enactment
architecture. In [NaLS03] the use of rules and events for activity coordination is pro-
posed. The WorCos concept [Schu99] developed a workflow service, which is inte-
grated into the Object Management Architecture (OMA) [OMG]. Business processes
are represented as CORBA objects, which are created by compilation. The objects
contain nearly the complete functionality to execute the business process such as role
associations, process state and meta data. The IBM Business Process Execution Lan-
guage for Web Services JavaTM Run Time [BPWS4J] executes business processes
using 3 documents. Starting point is the process schema represented in a BPEL4WS
document. A WSDL-document [WSDL] specifies the interface of the business proc-
ess provided to other business processes. A third document is used for specifying the
web services used during execution [LeRo02]. BPWS4J creates process instances
directly from the process schema by interpretation.

5 The Aspect-element-oriented schema representation

If the approaches listed above are carefully analyzed, two basic architectures can be
identified. They are called the direct and the indirect coordination approach. In the
direct coordination architecture activities are directly coordinated by a mechanism

216

interpreting the process schemata. No intermediate structure exists as shown in Figure
2. The coordination mechanism also integrates services, for example s1 and s2. High
flexibility in changing schemas is the primary advantage of the direct coordination
approach. Changes to the process schema can be implemented immediately because
the schema is interpreted. For example, a new activity can be easily integrated. The
same applies for instance evolution. On the other side, extensions or changes of the
business process model are difficult to implement, because the interpretation engine
has to be modified. The most serious disadvantage of the direct coordination ap-
proach is limited scalability as the interpretation is centralized and cannot be distrib-
uted. Because every step in the coordination of activities requires the involvement of
the coordination mechanism, a central bottleneck is created. Furthermore, the exis-
tence of a centralized coordination mechanism destroys the coordination autonomy
and knowledge encapsulation as process definitions are centralized and therefore not
under control of the process owner. Service autarchy is lost too, because the central-
ized coordination mechanism integrates all services used during process execution.
The interpretation impedes service extensibility and integration, as the coordination
mechanism is not designed in an extensible way. The same applies for asynchronous
service evolution.

Schema
representation

s2s1

System
boundary

Schema
representation

Schema
representation

coordination coordination coordination

Process schema

InterpretationEngine

s2s1

Indirect coordination Direct coordination

Generation (1)

Process schema
Activity

(2)

Figure 2: Direct and Indirect coordination

The other basic architecture - indirect coordination - is also shown in Figure 2.
Here, coordination is done in two steps. In the first step, a so called schema represen-
tation is created (1). In the second step (2), the schema representation coordinates the
activities. Thus the coordination of activities can be separated from the creation of the
schema representation. Furthermore, services such as s1 and 2 for example have not
to be centrally integrated, but can be directly accessed. The use of two steps to gener-
ate process instances is the reason for the high scalability of the indirect coordination
approach. The creation of the schema representation can be separated from coordina-
tion. By copying the schema representation and distributing it, coordination of activi-
ties can be done on a multitude of systems. Thus high scalability is achieved. How-
ever, the indirect coordination offers only a limited flexibility for schema changes,
because they cannot be implemented incrementally: the schema representation is
monolithic and static. Coordination autonomy and knowledge encapsulation can be
achieved at least by workarounds. The idea is to create separate (sub-) schema repre-

217

sentations for each sub process. Service extensibility and integration are impeded
because the set of services is fixed and the integration capabilities limited, the same
applies for the asynchronous service evolution. Finally the requirement of service
autarchy is orthogonal to the concept of the indirect coordination. If a centralized
intermediate is used, service autarchy is lost, if a service-oriented architecture is used,
service autarchy is maintained. The result of our investigations can be summarized as
shown in Figure 3. Standing out is the obvious dilemma between process evolution
and scalability. Direct approaches provide schema and instance evolution but limited
scalability; indirect approaches provide scalability but no process evolution.

Knowledge
encapsulation

Service autarchy

BPM evolution

Scalability

Service
extensibility and

integration

Indirect coordinationDirect coordination

Asynchronous
service evolution

Coordination-oriented requirements

Service-oriented requirements

Schema evolution

Instance evolution

Coordination
autonomy

Figure 3: Fulfilment of the requirements for the inter-organizational coordination of

activities

Web services fulfil all service-oriented requirements for the inter-organizational
coordination of activities. If they are combined with the architectures described so
far, they can improve these architectures by providing a better support for service
integration. However, the combination of existing architectures with web services is
not a remedy for the fundamental deficiencies of these approaches identified above.
For example, the direct coordination approach, suffering from a low scalability, does
not become scalable if combined with web services. Most important, the dilemma
between process evolution and scalability identified in section 4 is can not be solved
by the use of web services.

To create an architecture which escapes from the dilemma between process evolu-
tion and scalability and which fully uses the benefits offered by web services, two
different potential strategies exist. One strategy is to try to improve the scalability of
the direct coordination approach. For example, one could use several interpretation
engines instead of one. However, this does not solve the fundamental problem that
the “flow of control” of the business process always returns to the interpretation en-
gine. The centralized engine remains the bottleneck and therefore, the strategy of
improving the direct coordination approach has to be dismissed. The other strategy is
to improve the schema representation of the indirect coordination approach in order
to support business process model, schema and instance evolution. To do so, two
design steps have to be made. First a suitable granularity of the schema elements has
to be found. Second, it has to be decided whether a homogeneous or heterogeneous
composition of the schema elements should take place. A composition is heterogene-
ous if there are emphasized elements, for example by coordinating other elements. In
a homogeneous composition all elements are handled in the same way.

218

First ideas concerning an appropriate granularity for activity coordination can be
found in [AWBB93] and [LeRo97]. In [AWBB93] the interactions between several
activities were identified as cause for lacking evolution support. Thus, interactions
between objects were separately handled in so-called interaction patterns. In
[LeRo97] the separation of the control flow from the other elements was identified as
precondition to avoid applications to become flow dependent and thus inflexible. An
analysis why object-oriented software systems in general may become inflexible is
the basis of Aspect-Oriented-Programming (AOP) [Kicz96]: Different so-called as-
pects are mixed together and make the software difficult to adapt. Furthermore, func-
tionality which belongs to one aspect is spread over different classes. Due to this
“cross-cutting” functionality [Kicz96] changes to one class imply a multitude of side
effects to other classes which participate in the cross-cutting functionality. Therefore,
when designing a schema representation, the aspects of business processes have to be
identified and separated. Five basic aspects of business processes are identified in
[JaBu96]: the functional, control, informational, organisational and operational as-
pect. The functional aspect describes how a business process is composed of activi-
ties. The control aspect describes how activities are executed dependent on the result
or completion of other activities. In the organizational aspect, the relation between the
business process and the organization structure is established. The operational aspect
describes external services to be used during the process. The data flow is covered in
the informational aspect. These “core-aspects” of business process are orthogonal
dimensions of activity coordination. For example, the organizational structure repre-
sented in the organizational aspect may change completely, but the sequence of ac-
tivities in the process may remain unchanged. However, the approach to encapsulate
each aspect into one element does not fulfil the requirements of inter-organizational
activity coordination. Scalability is lost because the centralized elements for each
aspect become a bottleneck. Furthermore, one has to recall that the activities are dis-
tributed to different enterprises and therefore also the services needed to implement
them. Thus putting all aspects into one element creates a centralized integration en-
gine comparable to the EAI engine discussed. Based on these considerations, the
granularity of the schema representation has to be finer. An appropriate granularity
can be achieved when applying aspect elements instead of aspects. Aspect elements
are no further dividable, atomic parts of business processes which contain only func-
tionality of one aspect. If aspect elements are applied as granularity for a schema
representation, a so-called aspect-element oriented schema representation is created.

The second design step is to decide whether a homogeneous or heterogeneous
composition should be chosen. A heterogeneous composition means that one group of
aspect elements plays an emphasized role. For example, the elements of the control
flow aspect could be put in an emphasized role. The aspect elements of the control
flow are directly connected and perform the coordination of all other aspect elements.
The problem of heterogeneous composition is that the emphasized aspect elements
violate service autarchy by creating “hubs” for accessing the services used for imple-
menting other aspect elements. Contrary to heterogeneous service composition, the
homogeneous service composition maintains the service autarchy. There are no as-
pect elements which are needed to access other aspect elements: all services are ac-
cessed directly. Therefore, two kinds of connections between aspect elements are
defined. Temporal connections indicate that the aspect elements are executed con-
secutively. Client-server connections indicate the (multiple) use of a element by an-

219

other element. To visualize the concept of the homogeneous aspect element oriented
schema representation, a small fragment is represented in Figure 4.

Calculate
order
value

Order
Value

> 5000 Euro

Extended
check

Standard
check

Rating
system

(external

Accounting
department

Credibility
Ok ?

Continue
order

processing

Reject
order

Order
management

system

Operational aspect

Informational aspect

Organisational aspect

Control aspect

Temporal connection

Client/server connection

Figure 4: Homogenous, aspect-element-oriented schema representation

The fragment defines, that starting from a calculated order value of 5000 Euro, an
extended check of the customer’s credibility by querying an (external) rating system
shall take place. Otherwise a standard check is done by the accounting department.
The representation elements are coloured according to the aspect they belong to. The
full lines indicate temporal connections. The dashed lines indicate client-server rela-
tionships.

6 Implementing the aspect element oriented schema
representation by composite applications

6.1 Composite applications

It can be easily seen, that a dynamic composition is necessary to fulfill the require-
ments of process model, schema and instance evolution. The elements of the schema
representation must be connected in a reconfigurable manner, so that extensions and
changes to the schema representation can be implemented dynamically. This is
achieved by so-called composite applications on the basis of web services. They
break with the thinking that applications and executables have to be one. A composite
application is created by a set of interconnected and parameterized services as shown
in Figure 5. There is no “executable” any more which contains the application func-
tionality.

The adaptation of web services to an individual composite application is done by
specialization, which is done by applying specialization information to the services:
the web service is parameterized and connected to other web services depending on
the requirements of the composite application. Therefore, the specialization informa-
tion contains both parameterisation and connection information. The parameterisation
information adapts the web service to the individual needs of the composite applica-

220

tion. The connection information contains the connections of the web service with
other services in the context of the composite application. For different composite
applications there is different specialization information. The specialization informa-
tion is not centrally stored but directly accessible to the web services. The specializa-
tion information for different composite applications is discriminated by the so-called
global context identifier. The so-called local context identifier differentiates multiple
uses of the same service in a composite application. Therefore, every web service
“knows” what to do every time.

s2s1 s3

service Specialization
information

s1 s2 s2 s3

Composite application A Composite application B

ia1 ia1

ib1

ib1

s3

ib2

Figure 5: Composite application

An example is given in Figure 5. There are two composite applications A and B.
They are created using three web services s1, s2 and s3. Composite application A is
created by using web services s1 and s2 with the specialization information denoted
with the context identifier ia1. The identifier is composed from a global and a local
context identifier. The global context identifier ia associates the specialization infor-
mation with the composite application A. The local context identifier denoted “1 “
determines the context within composite application A. The specialization s1 con-
tains the connection information representing the connection between s1 and s2. Fur-
thermore s1 and s2 are parameterized. Composite application B is created by using
web services s2 and s3 using specialization information denoted with the global con-
text identifier ib. By evaluation of the global context identifier, web service s2 can
differentiate if it is called in the context of composite application A or composite
application B. Web service s3 is multiply used within composite application B.
Therefore there are two sets of specialization information denoted with the global
identifier ib and differentiated by the local identifiers “1 “ and “2 “ . If s3 is used for the
first time, the specialization information denoted with ib1 is used. The second time,
the specialization information ib2 is used.

6.2 Generating aspect-element oriented composite applications

The process of generating aspect-element oriented composite applications is shown
in Figure 6. There are three steps in the generation procedure. Starting point is the
specification of the activities to be coordinated, for example a document according to
the BPEL4WS specification.

221

Calculate
order
value

Order
Value

> 5000 Euro

Extended
check

Standard
check

Rating
system

(external

Accounting
department

Credibility
Ok ?

Order
confirmation

Order
rejection

Order
management

system

s1 s2 s3 s4 s5 s6 s7 s8 UDDI

Step 2

Step 3

s1

s2

s3 s3

s4

s5

s6

s7

s8

s8

BPEL4WS
document

Step 1

Figure 6: Generation of aspect-element oriented composite applications

1. In the first step the business process specification is analyzed and aspect-
element oriented representation elements are identified. That means, the
specification is separated into aspects and the aspect-specific content is
divided into aspect elements. This procedure has to maintain the connec-
tion information of the different aspect elements. The result of the first
step is a specification of the business process using aspect elements as
granularity.

2. In the second step, for each representation element, an appropriate service
has to be found. This may be done by querying a web service repository
such as UDDI [UDDI]. In most cases, there is no perfect fit; therefore, the
search has to include also web services which can be properly adapted by
specialization. Furthermore one web service may be a fit to several repre-
sentation elements. For example web service s3 can be used to implement
both the check whether the order value is greater 5000 euro and the check
whether the customer’s credibility is ok. This is possible because the web
service can be adapted by parameterization to the respective criterion. The
first usage of the web service tests the criterion order value, the second
test the credibility. The same applies to web service s8 which is used to
implement both the order confirmation and the order rejection. The result
of step 2 can be seen in Figure 6. A web service is associated to each as-
pect element.

3. In the third step, appropriate specialization information containing param-
eterization and connection information is generated and attached to the
service. The parameterization information has to adjust the web service to
the individual requirements. For example the order value which should
initiate a detailed investigation of the customer’s liquidity is adjustable.
The connection information has to be generated according to the connec-
tions of the representation elements. It is important to notice, that the web
services s3 and s8 have 2 sets of specialization information because both
are used two times. The usages are differentiated by context identifiers,
which are issued by the antecedent web service. By this means, s3 will

222

test the order value if it is called by s1 and test credibility if it is called by
s5 or s6.

6.3 Execution of aspect-element oriented composite applications

The execution of aspect element oriented composite applications is done by running
iteratively through 4 phases, as shown in Figure 7. Each service runs through the
phases after it has been initiated by its predecessor. The execution of the composite
application stops when the final service is completed.

ia1

service

Context
identifier

Ad-hoc
specialization
information

Specialization
information

1. Initiation
Phase

2. Specialization
Phase

3. Execution
Phase

4. Evaluation
Phase

ia1
Context
identifier

Ad-hoc
specialization
information

Context
identifier

Ad-hoc
specialization
information

ia1

(Next)
Initiation

Phase

Figure 7: Execution of composite applications

1. The first phase is the initiation phase. The service is started using the in-
formation supplied from the calling service. It contains the global and lo-
cal context identifier. The global identifier is necessary to define the com-
posite application the service is used for. The local identifier defines the
context within the composite application. Furthermore, ad-hoc specializa-
tion information is provided if necessary. Ad-hoc specialization informa-
tion overrides or supplements the specialization information attached to
the service.

2. The second phase is the specialization phase. The specialization informa-
tion is selected, depending on the global and local identifier supplied in
phase 1. The specialization information is loaded by the service, as it is
directly attached directly to it. By applying the specialization information
the service is tailored to the individual needs of the composite application.
This contains both the parameterization of the service and the connection
information to other services.

3. The third phase is the execution phase. In the execution phase, the service
is executed using the parameterisation and connection information, which
is contained in the specialization information. The client-server connec-
tion information is used to identify other services needed during execu-
tion.

4. The evaluation phase is the last phase. Here, the results of the service
execution are evaluated and the consecutive services are determined using
the temporal connection in the connection information. For example, de-

223

pending on the result of the credibility check, either an acceptance or re-
fusal of the order is initiated.

7 Summary

The inter-organizational coordination of activities is crucial for enterprises which
have to quickly adapt or create partnerships with other enterprises to support open
process networks and virtual enterprises. In such an environment partners are re-
placed in existing partnerships and new partnerships are built. This fluctuation of
business partners creates new and extended requirements to coordination architec-
tures for activities. The first group are coordination oriented requirements: coordina-
tion autonomy, process evolution, knowledge encapsulation and scalability. The sec-
ond group are service-oriented requirements: Service autarchy, service extensibility,
service integration and asynchronous service evolution. The key to fulfil all of these
requirements is to use a homogeneous and dynamic aspect-element oriented schema
representation as part of an indirect coordination approach. It is implemented by a
composite application using specialized web services. The next steps will be the de-
sign of a service weaver and the introduction of tracking and tracing mechanisms.

References

[AALS00] W. M. P. van der Aalst: Process-oriented Architectures for Electronic Com-
merce and Interorganizational Workflow. Information Systems, 24(8), 2000

[AWBB93] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, A. Yonezawa: Abstracting Ob-ject
Interactions Using Composition Filters. In R. Guerraoui, O. Nier-strasz, M.
Riveill (Eds.): Object-Based Distributed Programming, ECOOP '93 Workshop,
Kaiserslautern, Germany, July 26-27, 1993. LNCS Vol. 791, Springer Verlag,
Berlin, 1994.

[BCGL02] D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, M. Mecella: A Foun-
dational Framework for e-Services.

[BPEL] Business Process Execution Language for Web Services, Version 1.0
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf

[BPML] BPML.org. Business Process Modelling Language (BPML).
[BPWS4J] http://www.alphaworks.ibm.com/tech/bpws4j
[CaIJ00] F. Casati, S. Ilnicki, Li-Jie Jin: eFlow: a Platform for Developing and Composite

e-Services. HP Laboratories Palo Alto. Report HPL-2000-36, March 2000.
[DaHL01] Business Process Coordination: State of the Art, Trends and Open Issues. Pro-

ceedings of the 27th VLDB Conference Rom, 2001
[EDI] http://www.unece.org/trade/untdid/welcome.htm
[FDBP01] M.-C. Fauvet, M. Dumas, B. Benatallah, H. Paik. Peer-To-Peer Traced Execu-

tion of Composite Services. In Proceedings of the International Workshop on
Technologies for E-Services (TES 2001). In cooperation with VLDB 2001.

[GrSi02] S. Graham, S. Simeonov et. Al.: Building Web Services with Java, SAMS Pub-
lishing, Indianapolis, Indiana, USA, 2002

[Hare88] D. Harel: On Visual Formalisms. Communications of the ACM, 31(5), Mai
1988, S. 514 – 530.

[J2EE] http://java.sun.com/j2ee/
[JaBu96] S. Jablonski, C. Bußler: Workflow Management - Modeling Concepts, Architec-

ture and Implementation. London 1996

224

[Kicz96] G. Kiczales: Aspect-oriented programming. ACM Computing Surveys, 28(4),
Dezember 1996.

[KlWA99] J. Klingemann, J. Wasch, K. Aberer: Deriving Service Models in Cross-
Organizational Workflows. Proceedings of RIDE – Information Technology for
Virtual Enterprises, Sydney 1999.

[LASS00] A. Lazcano, G. Alonso, H. Schuldt, C. Schuler: The WISE approach to Elec-
tronic Commerce. International Journal of Computer Systems Science & Engi-
neering, special issue on Flexible Workflow Technology Driving the Networked
Economy, Vol. 15, No. 5, September 2000.

[LeRo02] F. Leymann, D. Roller: Business processes in a Web services world: A quick
overview of BPEL4WS.
ftp://www6.software.ibm.com/software/developer/library/ws-bpelwp.pdf

[LeRo97] F. Leymann, D. Roller: Workflow-based applications. IBM Systems Journal,
Volume 36, Number 1, 1997

[MBBN03] B. Medjahed, B. Benatallah, A. Bouguettaya, A. Ngu, A. K. Elmagarmid: Busi-
ness-to-business interactions: issues and enabling technologies. VLDB Journal
2003, 12: p 59-85

[MKSH02] J. Meng, R. Krithivasan, S. Su and A. Helal, "Flexible Inter-enterprise Work-
flow Management using E-Services," Proceedings of the 4th IEEE International
Workshop on Advanced Issues of E-Commerce and Web-based Information
Systems (WECWIS), Newport Beach, California, USA, June 2002 (pdf).

[MPSK98] J. A. Miller, D. Palaniswami, A. P. Sheth, K. Kochut, H. Singh: WebWork:
METEOR2's Web-Based Workflow Management System. Journal of Intel-ligent
Information Systems (JIIS), 10(2), 1994, S. 185 — 215.

[MSLH02] J. Meng, S. Y.W. Su, H. Lam and A. Helal, "Achieving Dynamic Inter-
organizational Workflow Management by Integrating Business Processes,
Events, and Rules," Proceedings of the Thirty-Fifth Hawaii International Con-
ference on System Sciences (HICSS-35), January 2002 (pdf).

[NaLS03] K. Nagarajan, H. Lam, S. Su: Integration of Business Event and Rule Manage-
ment with the Web Services Model,” in the Proceedings of the First Interna-
tional Conference on Web Services(ICWS ’03), June 23-26, 2003, Las Vegas,
NV.

[OMG] http://www.omg.org
[PaYa02] M. P. Papazoglou, J. Yang: Design Methodology for Web Services and Busi-

ness Processes. Proceedings of the Technologies for E-Services Third Interna-
tional Workshop, TES 2002, Hong Kong, China, August 23-24, 2002. Editors:
Buchmann, A., Casati, F., Fiege, L., Hsu, M.-C., Shan, M.-C. Lecture Notes on
Computer Science, Springer-Verlag, Berlin, Germany. Pages 54 - 64.

[PiFW03] G. Piccinelli, A. Finkelstein, S. L. Williams. "Service-oriented Workflows: the
DySCo framework" To appear: Proc. Euromicro Conference, Antalya, Turkey
(2003).

[PiZW03] G. Piccinelli, C. Zirpins and W. Lamersdorf: The FRESCO Framework: An
Overview. Proceedings 2003 Symposium on Applications and the Internet
Workshops (SAINT 2003 Workshops) Published by IEEE Computer Society, S.
120-123

[SABK98] R. Schmidt, U. Assmann, P. Biegler, R. Kramer, P. C. Lockemann, C. Rolker:
The Interrelatedness of Component-oriented Systems And Work-flow-
Management: What they can do for each other. Workshop on Com-positional
Software Architectures. Monterey, USA, 1998,
http://www.objs.com/workshops/ws9801/papers/paper099.doc

[SBMW96] W. Schulze, M. Böhm, K. Meyer-Wegener: Services of Workflow Objects and
Workflow Meta-Objects in OMG-compliant Environments, OOPSLA 96,
Workshop on Business Object Design and Implementation, San José, CA.

225

[Schm97] R. Schmidt: Component-based systems, composite applications and workflow-
management. In Proceedings Workshop Foundations of Com-ponent-Based Sys-
tems, Zürich, Schweiz, 26. September, 1997, S. 206 — 214.

[Schu99] W. Schulze: Ein Workflow-Management-Dienst für ein verteiltes Objekt-
verwaltungssystem. Dissertation, TU Dresden 1999.

[SeDH02] J. Seeley Brown, S. Durchslag, J. Hagel III: Loosening up: How process net-
works unlock the power of specizalization. The McKinsey Quarterly 2002 Spe-
cial Edition: Risk and Resilence.

[W3C] www.w3c.org
[W3WS] http://www.w3.org/2002/ws/
[WeKl02] I. Wetzel, R. Klischewki: Serviceflow Beyond Workflow? Concepts and Archi-

tectures for Supporting Inter-Organizational Service Processes. 14th CAiSE.
Springer Lecture Notes in Computer Science, Berlin, pp. 500-515, 2002

[WSDL] http://www.w3c.org/wsdl
[WSFL] F. Leyman, ’Web Services Flow Language’, IBM Software Group specification,

Mai 2001
[XML] http://www.w3c.org/xml
[YaPH02] J. Yang, M. P. Papazoglou, W. J. v. Heuvel: Tackling the Changes of Service

Composition in E-Marketplaces, Proceedings of the 12th International Work-
shop on Research Issues on Data Engineering: Engineering E-Commerce / E-
Business Systems (RIDE-2EC 2002), San Jose, USA, 2002

226

