
Secure Communications in Multi-Agent Systems 
Protecting KQML 

Sierra  J. M., Hernández J.C., Izquierdo A. and Ribagorda A. 

IT security Group. University Carlos III of Madrid. Spain 

Abstract. When multiagent systems use insecure networks their 
communications must be protected in the same way that any other applications 
that run over this type of channels. There is no doubt that multiagent systems 
expansion will be joined to the Internet technology, and for that reason our 
work tries to protect agents communications by a new security architecture and 
an extension of the KQML. Our security architecture has been designed to be 
installed over the RETSINA framework, which was specifically designed for an 
open system, such is the Internet. The core of our proposal is a SEcurity 
SubAgent Module, called SESAMO, which was expressly designed to easily 
interact with the RETSINA components. The protection is based a public key 
infrastructure that, in addition to an extension of KQML, will supply 
authentication, non-repudiation, integrity and confidentiality services to agent 
communications. 

1 Introduction 

KQML, Knowledge Query and Manipulation Language, permits autonomous and 
asynchronous agents share their knowledge and work cooperatively for solving 
problems. The possibilities of Multi-Agent Systems (MAS) increase considerably if 
they use the Internet. But it is necessary to adapt the KQML to this open environment, 
supplying to the agents security services such are confidentiality, integrity, 
authentication and non-repudiation. 

First aim of this security architecture is to effortlessly coexist with other 
multiagent systems. Our proposal is designed to work over the RETSINA framework. 
The core of our architecture is the SESAMO module (SEcure SubAgent MOdule). 
This module supplies cryptographic capabilities to RETSINA Task Agents, 
permitting them to establish secure communications with others. The SESAMO 
module can be installed into a Host Agent or also allows that several agents (agents 
connected by a private network or installed into the same machine) to share a single 
SESAMO, we called that option Shared SESAMO. We also describe some other 
functions that can be developed by SESAMO because its design can be used as a 
communications security gateway between groups of agents. 

Agents that want to interact directly with their parties can bypass our 
architecture. A common situation could be that Task Agents just use the SESAMO 
when the remote agent is asking for a secure connection, or when they want to 
establish this type of connections with others. In the rest of situations they will 

J. M. S., J.C. H., A. I. and A. R. (2004).
Secure Communications in Multi-Agent Systems Protecting KQML.
In Proceedings of the 2nd International Workshop on Security in Information Systems, pages 305-313
DOI: 10.5220/0002684803050313
Copyright c© SciTePress



 
communicate openly with KQML. The SESAMO modules will communicate using a 
security extension of KQML that we have designed. This extension is called KQML-
SE and is composed by three  new performatives: 

  
1. Cryptographic Capabilities Negotiation. 
2. Both Parties Authentication messages. 
3. Encapsulated KQML messages. 

 
Our scheme is based on public key cryptography, and obviously this 

environment needs the existence of a Public Key Infrastructure. This PKI will be used 
for the authentication of agents and hence the architecture security relies on it. We 
have designed another extension of KQML that provides the performatives needed for 
the creation, renewal and cancellation of certificates, and also for the maintenance of 
Certificate Revocation Lists (usually noted as CRL’s). All these topics will not be 
treated in this paper because we would need some more extra space to describe its 
behaviour and management. However, we are aware about the essential role that PKI 
plays in our architecture.  

2 Security Architecture 

When we start this work we tried to develop architecture easy to place in a  
Multi-Agent System. This architecture should introduce the minimum number of 
changes, enabling an agent to integrate security services with no modifications on its 
basic architecture. In this paper we concentrate our work in the well-know 
architecture called RETSINA. In our proposal each agent (from now on, Host Agent) 
has another sub-agent associated, called SESAMO (SEcurity Sub-Agent MOdule). 
SESAMO module is in charge of dealing with all the KQML messages sent or 
received by the Host Agent. 

Fig. 1. :  KQML-SE architecture based on the SESAMO 

The SESAMO only manages performatives defined by our new ontology 
PKCertificate. SESAMO has implemented all the cryptographic capabilities that the 
Host Agent does not have; in this way the SESAMO will provide all the required 

Host Agent  

Security 
Management
Connection 

Management

Internet 
SESAMO  

Connection type 
configuration 

 KQML 
messages 

KQML-SE 
Messages 

306



 
security services (authentication, non-repudiation, confidentiality and integrity). On 
the other hand the agent will be working with no change, security services will be 
applied by the SESAMO transparently to the Host Agent. The Host Agent only must 
indicate to the SESAMO which messages will need protection.  

The SESAMO will be divided into two parts, Security Management part, which 
will be in charge of protecting the KQML messages exchanged between the Host 
Agent and the other agent. And the second part, Connection Management, which will 
be use by the Host Agent to specify to the SESAMO the connection features. The 
Host Agent must indicate to the SESAMO what to do in case that other remote agent 
does not have his own SESAMO. For example a Host Agent could block any message 
that is not authenticated, in this case the SESAMO will be protecting his agent from 
non-authenticated communications just keeping away from messages that does not 
contains the PKCertificate ontology. The SESAMO could filter communications, for 
example rejecting messages with certain source address, size, etc.. 

Another functionality that can be included into the SESAMO is a Connection 
Features Database. Into this database will be stored the connection features of a pair 
of agents (the Host Agent and the remote Agent). Using this database will be skipped 
the main work of the Connection Management part of the SESAMO. This database 
will be particularly useful when a Shared SESAMO is used (see Sharing a SESAMO 
Agent section) 

An important advantage of our design is that the communication is possible in any 
case. If one of the parties does not have a SESAMO module, the other SESAMO can 
bypass the common KQML messages (without the PKCertificate ontology) and 
permits to establish the communication. 

Table 1. : Optional functionalities of SESAMO module 

Function Type 
Encapsulating (KQML ↔ KQML PKCertificate). Obligatory 
Strong Authentication of both agents Obligatory 
Digital signature of KQML messages Obligatory 
Shared SESAMO Optional 
KQML messages filtering Optional 
Connection features Database Optional 

3 KQML Security Extension. KQML-SE 

The KQML security extension consists on four new performatives. These 
performatives will be used in three steps. The first one is the negotiation of the 
Cryptographic capabilities. The new performative designed is negotiation, which 
enables to negotiate: Certification Authorities, Digital Signature Algorithm, Cipher 
Algorithm and Digest Algorithm.  

Once agents know the cryptographic capabilities one each other, it begins the 
second step where is accomplished the authentication of the parties and the 
establishment of a shared secret key (this key will be based on information supplied 

307



 
by both parties). The performatives that support this second step are Auth-link and 
Auth-challenge.  

Finally, once the parties are properly authenticated and a ciphering key is 
established, it is possible to set up a secure channel. The performative is called  
Auth-private. 

 Next subsection describes the new parameters involved. 

3.1 New parameters 

3.1.1 :certificateCA(<Certification Authority 1><Certification Authority 
2>,...) 
Where the argument <Certification Authority X> is the identification associated to 
one Certification authority (Thawte, VeriSign). This parameter is an enumeration of 
the different certification authorities supported by the agent. It is a parameter of the 
Negotiation performative. 

3.1.2 :certificate (<Certification Authority><the certificate>) 
The second argument is the certificate, which is a public key signed by a certification 
authority (indicated in the first argument). 

3.1.3 :connection-id (<NONCE_X><NONCE_Y >) 
This parameter is used in the Auth-private performative and identifies a previous 
negotiation. 

3.1.4 :auth-key(<boole><key-type><SEED>) 
First argument is a Boolean value. If this value is TRUE the session key must be 
changed. The new key to use will be the result of a hash function calculated over the 
concatenation of SEED, NONCE_X and NONCE_Y (the resulting digest could need 
to be adapted to the encryption algorithm key size. This operation is done to ensure 
that the new key depends from both parties.  

If the first argument is FALSE, next arguments will be ignored because the agent is 
signifying that, for the moment, the session key is valid. Any party of the 
communication could indicate a key change when it considers appropriate. This 
parameter is included into Auth-private and Auth-challenge performatives. 

3.1.5 :signature(<<Key_ID><information signed>) 
The second argument represents certain information digitally signed by the agent. The 
first argument identifies the public key that must be used to check the signature. It is 
included into Auth-link, Auth-challenge and Auth-private performatives and provides 
Authentication and Non-Repudiation of the messages. 

308



 
3.1.6 :algSecretKey (<alg1><alg2>...<algN>) 
It indicates the different symmetric cipher algorithms supported by the agent that 
sends this parameter into a Negotiation performative. Also it is used in Auth-link 
performative, in this case an agent is indicating to its party the selection of certain 
algorithm.  

3.1.7 :algSignType (<alg1><alg2>...<algN>) 
This parameter indicates the different digital signature algorithms supported by the 
agent that sends the message. Can be used into a Negotiation performative and in 
Auth-link performative but in this case it is signifying the selected algorithm  

3.1.8 :algDigestType (<alg1><alg2>...<algN>) 
This parameter indicates the different digest algorithms supported by the agent that 
sends the message. Can be used into a Negotiation performative and also it can 
appears in a Auth-link performative but in this case just with the algorithm selected 

3.1.9 :mySESAMO (<SESAMO_ID><protocol><address>) 
It is used into the Negotiation performative and indicates what SESAMO agent is 
being used for protecting messages. 

3.2 New Performatives 

Into this section we will present the new performatives defined into KQML-SE. 
Those performatives should be added to those included into RETSINA. 

 

Table 2. New performatives for KQML-SE 

Performatives Meaning 
Auth-link Request of secure communication 
Auth-challenge Acknowledge for Auth-link request 
Negotiation Cryptographic capabilities negotiation 
Auth-private KQML messages ciphered and encapsulated 

 
In the following lines we describe the content of all these new performatives: 
 

Name: Negotiation. 
Description: Cryptographic capabilities negotiation between two SESAMO’s 
Additional paramenters: 
:mySESAMO (Only has to be used when a Shared SESAMO is used) 
Ontology: PKCertificate 
KQML Description: 
Negotiation:   
 : sender <A> 
: receiver <B> 

309



 
: certificateCA<VeriSign><Thawte><Internal Domain >.....> 
: mySESAMO <<X<tcpip><X@domain.com>> 
: algDigestType<<MD5><MD4><SHA>...> 
: algSecretKey<<DES><RC2>...> 
: algSignType<<RSA><DSA>> 
: ontology <PKCertificate>   
 
 
Name: Auth-link 
Description: Solicitud de comunicación segura.  
Optional parameters: 
:peer-address, only used when a shared SESAMO is used. 
:algDigestType, list of digest algorithms supported. 
:algSecretKey, list of symmetric algorithms supported. 
Ontology: PKCertificate 
KQML Description: 
Auth-link  
 :sender <A> 
 :receiver<B> 
 :reply-with<expresion> 
:algDigestTypeType<MD5> 
:algSecretKey<DES> 
:algSignType<RSA> 
 :certificate <<VeriSign><Certificate_A>> 
:signature<<A_KEY> <Signature of (NONCE_A & A & B )>> 
 :content: <NONCE_A> 

 
Name: Auth-challenge 
Description: Acknowledge for Auth-link request 
Ontology: PKCertificate 
KQML Description: 
Auth-challenge:  
 :sender <B> 
 :receiver<A> 
 :in-reply-to<expresion1> 
 :reply-with<expresion2> 
 :certificate <<VeriSign><CertificateB>>> 
:auth-key<<T><DES><SEED ciphered by the public key of A>> 
:signature<<KEY_B><Signature of (NONCE_A & NONCE_B & 
SESSION_KEY)>> 
:content: <NONCE_B> 

 
 
Name: Auth-private 
Description: KQML message ciphered and encapsulated.  
Ontology: PKCertificate 
KQML description: 

310



 
Auth-private:           
 :sender <A> 
 :receiver<B> 
 :in-reply-to<expresion1> 
 :reply-with<expresion2> 
 :connection-id<<NONCE_A><NONCE_B>> 
:auth-key< <FALSE> <><> > 
:signature<<A_KEY><Signature of(KQML message)>> 
 :content <KQML message ciphered with SESSION_KEY1> 

4 Sharing a SESAMO Agent  

The SESAMO module can be shared among more than one Host Agent. In this way 
all the KQML-SE messages must be sent to the SESAMO and the rest of non-
protected KQML messages can be sent by each agent itself. The advantages of this 
approach are very interesting, because using a shared SESAMO the agents can be 
working with KQML in the same way that they are already working. And, in case 
they need a protected communication with other agent, they will use the SESAMO for 
establishing a secure channel.  

The SESAMO needs to implement extra software for the management of several 
connections at the same time. This software will be able of storing the connection 
features of every agent into the commented Connection Features Database. The 
shared SESAMO is a distributed scheme. In this way any agent with authorization can 
use a shared SESAMO. However this system has been designed for being used in a 
community of agents connected by a private network (or agents that are running into 
the same machine). The utilization of Shared SESAMO through insecure networks 
needs additional protections that probably imply an excessive cost and more 
complicated management. 
 

                                                           
1 SESSION_KEY is the digest of NONCE_A, NONCE_B AND SEED. The digest funcition 

used is the agreed in the negotiation process.  

311



 

Fig. 2.  KQML-SE architecture based on a Shared SESAMO 

5 Conclusions 

The expansion of the Internet has important implications for the MultiAgent Systems. 
However the Internet features must be taken into account because all of them will be 
inherit by the applications that run over it. With this document we tried to outline the 
security architecture for protecting KQML communications. We are aware that the 
implementation of our proposal is not completely described here, but this topic is 
already open in our research group and we will report new contributions. 

KQML-SE and SESAMO are part of a complete system with the objective of 
providing secure communications. Foundations of this system are the public key 
cryptography and the implementation of a Public Key Infrastructure. We have 
developed an architecture for the management of PKI in a multiagent system, we have 
called this module SPA –Security Proxy Agent-. Our work is based on the 
contributions of Sycara about Security Agents. 

Further research on this topic can be associated to the utilization of IPsec 
framework for the communication of the agents (the new IP Security Protocol that 
supplies authentication, integrity and confidentiality of IP packets). In this way the 
SESAMO module can be substituted by an IPv6 implementation on the agents. 
However, if we use IP security, it does not replace the task of the mentioned SPA 
module. The combination of the SPA and IPsec protocol will be a next step for our 
future research works. 

Connection configuration

 KQML messages

KQML-SE messages 

Security 
Management
Connection 

Management

Internet 

Shared 
SESAMO 

Agent  

Agent  

Agent  

Agent  

312



 
6 References 

[1] W. Timothy Polk, Donna F. Dodson, etc, Public Key Infrastructure: From Theory to 
Implementation, http://csrc.ncsl.nist.gov/pki/panel/overview.html, NIST 

[2] Tim Finin, Yannis Labrou, and James Mayfield, KQML as an agent communicatíon 
language, in Jeff Bradshaw (Ed.), "Software Agents", MIT Press, Cambridge (1997). 

[3] Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian M. Thomas, Tatu Ylonen, 
Simple Public Key Certificate, http://www.clark.net/pub/cme/spki.txt 

[4] Ronald L. Rivest, Butler Lampson, SDSI - A Simple Distributed Security Infrastructu,re, 
http://theory.lcs.mit.edu/ cis/sdsi.html 

[5] Bruce Schneier,Applied Cryptography, Second Edition, John Wiley and Sons, Inc., 1996. 
[6] Matt Blaze, Joan Feigenbaum, Jack Lacy, Decentralized Trust management, In Proceedings 

1996 IEEE Symposium on Security and Privacy, May, 1996. 
[7] Sycara, K., Decker, K, Pannu, A., Williamson, M and Zeng, D., Distributed Intelligent 

Agents.  IEEE Expert, pp.36-45, December 1996. 
[8]  Tim Finin, James Mayfield, Chelliah Thirunavukkarasu, Secret Agents - A Security 

Architecture for the KAML Agent Communication Language, CIKM'95 Intelligent 
Information Agents Workshop, Baltimore, December 1995. 

[9]  Qi He, Katia P.Sycara. Personal Security Agent: KQML-Based PKI. October 1997. 

313


