
 
-  Efficiency and Interactive Mining Knowledge: 
The prototype has been designed to be interactive 
with the user and to give the answer in real time in 
order to obtain the wanted population's partition. 
-  Accuracy: The use of the classic method of 
Benzécri to obtain the hierarchy of parts has 
guaranteed the goodness of such a partition. In 
addition, the procedure to obtain a good partition 
based on fuzzy sets has given excellent results 
during the tests. 
-  Friendly Interface: The interface of DAPHNE is 
graphic and completely user guided. Like-wise, the 
prototype includes a meta-database, in such a way 
that the management of a clustering project can 
become quick and easy for the user. 
 
  Regarding future works: 
-  we will show a theoretical study of the 
properties of the new similarity functions 
incorporated in this work (combining fuzzy set 
theory, classical distance functions, etc.) and 
how imply the clustering process; 
-  we will specify an extension of dmFSQL 
language that includes clustering clausules; 
-  we will integrate DAPHNE functionalities into 
dmFSQL Server. 
REFERENCES 
J.P. Benzécri et coll, 1976. L'analyse des données; Tomo 
I: La Taxinomie; Tomo II: L'analyse des 
correspondences. Paris, Dunod. 
R.A. Carrasco, J. Galindo, M.A. Vila, J.M. Medina, 1999. 
Clustering and Fuzzy Classification in a Financial 
Data Mining Environment.  3rd  International ICSC 
Symposium on Soft Computing, SOCO'99, pp. 713-
720, Genova (Italy), June 1999.  
R.A. Carrasco, J. Galindo, A. Vila, 2001. Using Artificial 
Neural Network to Define Fuzzy Comparators in 
FSQL with the Criterion of some Decision-Maker. In 
Bio-inspired applications of connectionism.-2001, eds. 
J. Mira and A. Prieto, Lecture Notes in Computer 
Science (LNCS) 2085, pp. 587-594. Ed. Springer-
Verlag, 2001, ISBN: 3-540-42237-4. 
R.A. Carrasco, M.A. Vila, J. Galindo, 2002. FSQL: a 
Flexible Query Language for Data Mining. In 
Enterprise Information Systems IV, eds. M. Piattini, J. 
Filipe and J. Braz, pp. 68-74. Ed. Kluwer Academic 
Publishers,  2002, ISBN: 1-4020-1086-9. 
M. Chen, J. Han, P.S. Yu, 1996. Data Mining: An 
overview from a Data Base  Perspective. IEEE 
Transac. On Knowledge and Data Engineering, Vol 8-
6 pp. 866-883. 
M. Delgado, A.F. Gómez-Skarmeta, A. Vila, 1996. On the 
Use of Hierarchical Clustering. In Fuzzy Modelling. 
International Journal of Approximate Reasoning, 14, 
pp. 237-257. 
W.J. Frawley, G. Piatetsky-Shapiro, C.J. Matheus, 1991. 
Knowledge Discovery in Databases: An Overview. In 
G. Piatetsky-Shapiro, W.J. Frawley eds. Knowledge 
Discovery in Databases pp. 1-31, The AAAI Press. 
J. Galindo, J.M. Medina, O. Pons, J.C. Cubero, 1998. A 
Server for Fuzzy SQL Queries. In Flexible Query 
Answering Systems, eds. T. Andreasen, H. 
Christiansen and H.L. Larsen, Lecture Notes in 
Artificial Intelligence (LNAI) 1495, pp. 164-174. Ed. 
Springer. 
J. Galindo, J.M. Medina, A. Vila, O. Pons, 1998. Fuzzy 
Comparators for Flexible Queries to Databases. 
Iberoamerican Conference on Artificial Intelligence, 
IBERAMIA'98, pp. 29-41, Lisbon (Portugal), October 
1998.  
J. Galindo, J.M. Medina, J.C. Cubero, O. Pons,  1999. 
Management of an Estate Agency Allowing Fuzzy 
Data and Flexible Queries. EUSFLAT-ESTYLF Joint 
Conference, pp. 485-488, Palma de Mallorca (Spain), 
September 1999. 
M.J. Martín-Bautista, M.A. Vila, 1998. Applying Genetic 
Algorithms to the Feature Selection Problem in 
Information Retrieval. In Flexible Query Answering 
Systems, eds. T. Andreasen, H. Christiansen and H.L. 
Larsen, Lecture Notes in Artificial Intelligence 
(LNAI) 1495, pp. 272-281. Ed. Springer. 
M.J. Quinn, 2003. Parallel Programming in C with MPI 
and OpenMP. McGraw-Hill. 
F.E. Petry, 1996. Fuzzy Databases: Principles and 
Application (with chapter contribution by Patrick 
Bosc). International Series in Intelligent Technologies. 
Ed. H.-J. Zimmermann. Kluwer Academic Publishers 
(KAP). 
M.A. Vila, 1979. Nota sobre el cálculo de particiones 
óptimas obtenidas a partir de una clasificación con 
jerárquica. Actas de la XI Reunión Nacional de I.O., 
Sevilla, España. 
USING dmFSQL FOR FINANCIAL CLUSTERING
141