0 5 10 15 20 25 30
−0.8
−0.6
−0.4
−0.2
0
0.2
0.4
0.6
0.8
1
1.2
Iterations number
ω (rad ⋅ s
−1
)
ω
x
ω
y
ω
z
(a) Rotational velocity
0 5 10 15 20 25 30
−1
−0.8
−0.6
−0.4
−0.2
0
0.2
0.4
Iterations number
v (m ⋅ s
−1
)
v
x
v
y
v
z
(b) Translational velocity
0 20 40 60 80 100 120 140 160 180 200
−0.07
−0.06
−0.04
−0.02
0
0.02
0.04
0.06
0.07
Rotation speed
Iterations number
ω
ω
x
ω
y
ω
z
(c) Rotational velocity
(Weighted features)
0 20 40 60 80 100 120 140 160 180 200
−0.1
−0.08
−0.06
−0.04
−0.02
0
0.02
0.04
0.06
0.08
0.1
Traslation speed
Iterations number
v
v
x
v
y
v
z
(d) Translational velocity
(Weighted features)
Figure 3: Experimental results: 2D visual servoing ap-
proach.
features on the center of the image. To assure the con-
tinuity of the control law in this case, a prediction fil-
ter developed by us is used to estimate the coordinates
of the occluded image features. With the experimen-
tal results, it has been shown that the 2D visual servo-
ing with weighted features is continuous and locally
stable in a neighborhood of the equilibrium point.
ACKNOWLEDGEMENTS
This work has been supported by the Spanish Govern-
ment through the ’Comision Interministerial de Cien-
cia y Tecnologa’ (CICyT) through project ”T
´
ecnicas
avanzadas de teleoperaci
´
on y realimentacin sensorial
aplicadas a la cirug
´
ıa asistida por robots” DPI2005-
08203-C02-02 and the Valencia Government trough
the project ”Desarrollo de T
´
ecnicas avanzadas de real-
imentacion sensorial aplicadas a Cirug
´
ıa Asistida por
Robots” GV05/192.
REFERENCES
Benhimane, S. and Malis, E. (2003). Vision-based con-
trol with respect to planar and non-planar objects us-
ing a zooming camera. In IEEE International Con-
ference on Advanced Robotics, volume 2, pages 991–
996, Coimbra, Portugal.
Chesi, G., Hashimoto, K., Prattichizzo, D., and Vicino,
A. (2002). Keeping features in the camera field of
view:a visual servoing strategy. In 15th Int. Symp.
on Mathematical Theory of Networks and Systems,
Notre-Dame, Indiana.
Conn, A., Scheinberg, K., and TointMalis, P. (1998).
A derivative free optimization algorithm in practice.
In Proc., 7th AIAA/USAF/NASA/ISSMO Symposium
on Multidisciplinary Analysis and Optimization, St
Louis, USA.
Corke, P. and Hutchinson, S. (2001). A new parititioned
approach to image-based visual servo control. IEEE
Trans. on Robotics and Automation, 17(4):507–515.
Cowan, N., Weingarten, J., and Koditschek, D. (2002). Vi-
sual servoing via navigation functions. IEEE Trans.
on Robotics and Automation, 18(4):521–533.
F.Schramm and G.Morel (2004). A calibration free ana-
lytical solution to image points path planning that en-
sures visibility. In IEEE International Conference on
Robotics and Automation, volume 1, New Orleans,
USA.
Gans, N. R. and Hutchinson, S. (2003). An experimen-
tal study of hybrid switched system approaches to
visual servoing. In IEEE International Conference
on Robotics and Automation, volume 1, pages 3061–
3068, Taipei, Taiwan.
Garcia-Aracil, N. and Malis, E. (2004). Preserving the con-
tinuity of visual servoing despite changing image fea-
tures. In In Proc. IEEE/RSJ International Conference
on Intelligent Robots and Systems, Sendai, Japan.
Gill, P. E., Murray, W., and W y Wright, M. H. (1981).
Practical optimizacion. Academic Press.
Malis, E. (2004). Visual servoing invariant to changes in
camera intrinsic parameters. IEEE Transaction on
Robotics and Automation, 20(1):72–81.
Malis, E. and Chaumette, F. (2002). Theoretical improve-
ments in the stability analysis of a new class of model-
free visual servoing methods. IEEE Transaction on
Robotics and Automation, 18(2):176–186.
Mezouar, Y. and Chaumette, F. (2003). Optimal camera
trajectory with image-based control. Int. Journal of
Robotics Research, 22(10):781–804.
Morel, G., Liebezeit, T., Szewczyk, J., Boudet, S., , and
Pot, J. (1999). Explicit incorporation od 2d constraints
in vision based control of robot manipulators. In
Int.Symposium on Experimental Robotics, volume 1,
Sidney, Australia.
Perez, C., Garcia-Aracil, N., Azorin, J., Sabater, J., and
Navarro, L. (2005). Image-based and intrinsic-free vi-
sual navigation of a mobile robot defined as a global
visual servoing task. In 2nd International Conference
on Informatics in Control, Automation and Robotics,
Barcelona, Spain.
Rosenbrock, H. (1960). An automatic method for finding
the greatest or least value of a function. Comp. J.,
(3):175–184.
Zhang, H. and Ostrowski, J. P. (2002). Visual motion plan-
ning for mobile robots. IEEE Trans. Robotics and Au-
tomation, 18(2):199–208.
THE VISIBILITY PROBLEM IN VISUAL SERVOING
485