References
1. Brown,P. and Botstein,D. (1999) Exploring the New World of the Genome with DNA
Microarrays. Nature Genetics Supplement, 21, 33-37.
2. Quackenbush,J. (2001) Computational Analysis of Microarray Data, Nature Rev. Genetic,
2, 418-427.
3. Armitage,P. and Berry,G. (1994) Statistical Methods in Medical Research, Blackwell.
4. Jaeger,J., Sengupta,R. and Ruzzo,W.(2003) Improved Gene Selection for Classification of
Microarray, Pacific Symposium on Biocomputing 8, 53-64.
5. Guyon,I, Weston, J., Barnhill,S. and Vapnik,V. (2002) Gene Selection for Cancer Classifi-
cation using Support Vector Machines, Machine Learning, 46(1-3), 389-422.
6. Peng,H, Long,F. and Ding, C. (2005) Feature selection based on mutual information: crite-
ria of max-dependency, max-relevance, and min-redundancy, IEEE Trans. on Pattern
Analysis and Machine Intelligence, 27(8),1226-1238.
7. Liu,Q. and Sung,A.H. (2006) Recursive Feature Addition for Gene Selection, Proc. of
IEEE - IJCNN 2006, Vancouver, Canada.
8. Golub, T. et al. (1999) Molecular Classification of Cancer: Class Discovery and Class
Prediction by Gene Expression, Science, 286, 531-537.
9. Shipp,M. et al. (2002) Diffuse Large B-Cell Lymphoma Outcome Prediction by Gene
Expression Profiling and Supervised Machine Learning, Nature Medicine, 8(1), 68-74.
10. Singh,D. et al. (2002) Gene Expression Correlates of Clinical Prostate Cancer Behavior,
Cancer Cell, 1(2), 227-235.
11. Alon,U. et al. (1999) Broad Patterns of Gene Expression Revealed by Clustering Analysis
of Tumor and Normal Colon Tissues Probed by Oligonucleotide Arrays, Proc. Natl.
Acad.. Sci. USA, Cell Biology, 96, 6745-6750.
12. Pomeroy,S.L. et al. (2002) Prediction of Central Nervous System Embryonal Tumor
Outcome based on Gene Expression, Letters to Nature, Nature, 415, 436-442.
13. Van,L.J. et al.(2002) Gene expression profiling predicts clinical outcome of breast cancer,
Letters to Nature, Nature, 415, 530-536.
14. Vapnik,V. (1998) Statistical Learning Theory, John Wiley.
15. Schlesinger,M. and Hlavac,V. (2002) Ten Lectures on Statistical and Structural Pattern
Recognition, Kluwer Academic Publishers.
16. Heijden,F., Duin,R., Ridder,D. and Tax,D. (2004) Classification, Parameter Estimation
and State Estimation, John Wiley.
17. Taylor,J. and Cristianini,N. (2004) Kernel Methods for Pattern Analysis, Cambridge
University Press.
18. Webb,A. (2002) Statistical Pattern Recognition, John Wiley & Sons, New York.
19. Tan,P., Steinbach,M. and Kumar,V. (2005) Introduction to Data Mining, Addison-
Wesley, 76-79.
20. Scholkopf,B., Guyon,I., Weston,J. (2003) Statistical Learning and Kernel Methods in
Bioinformatics, Artificial Intelligence and Heuristic Methods in Bioinformatics, P. Fras-
coin and R. Shamir (Eds.) IOS press, 2003
22