The benefits of the proposed model are: (1) the accelerometer can be attached to the
garments without the complicated setup procedures, (2) activities can be identified on
the same floor/level, (3) any accidental falls can be accurately identified.
This specific model could be applied in a smart home to monitor and discriminate
any discrepancy in subject’s behavior. In particular, this model could potentially help
older adults who are living independently in their homes. The usage of garments for
recording accelerometer signals, allows a non-intrusive monitoring technique of the
subject’s gait activities.
References
1. Fildes B. 1994. Injuries among older people. Melbourne: Collins Dove.
2. Fahrenberg, J., Foerster, F., Smeja, M., Muller, W. (1997), ”Assessment of posture and
motion by multichannel piezoresistive accelerometer recordings” , Psychophysiology. Vol :
34(5), pp. 607-612.
3. Mantyjarvi, J., Himberg, J., Seppanen, T. (2001), “Recognizing human motion with multi-
ple acceleration sensors”, Proceedings of IEEE international conference on Systems, Man
and Cybernetics, pp. 747-752.
4. Sekine, M., Tamura, T., Akay, M., Fujimoto, T., Togawa, T., and Fukui, Y.
(2002),”Discrimination of Walking Patterns Using Wavelet-Based Fractal Analysis”, IEEE
Transactions on Neural Systems and Rehabilitation Engineering, Vol : 10 (3), pp. 188-196.
5. Cho, S. Y., Park, C.G., and Jee, G.I., (2002),”Measurement system of walking distance
using low-cost accelerometers”, Proceedings of the 4
th
Asian Control Conference, pp.
1799-1803.
6. M. N. Nyan, Tay, F.E.H., Seah, K.H.W., Sitoh, Y.Y. (2005),”Classification of gait patterns
in the time-frequency domain”, Journal of Biomechanics, (In press).
7. Aminian, K., Robert, P., Jequier, E., and Schutz, Y. (1995), ”Estimation of Speed and
incline of walking using neural network”, IEEE Transaction on Instrumentation and Meas-
urement, Vol : 44(3), pp 743-746 .
8. Hassan, M.R., Begg, R., and Taylor, S. (2005), “Fuzzy Logic-based recognition of gait
changes due to trip-related falls”, Proceedings of the 2005 IEEE Annual Conference on
Engineering in Medicine and Biology(EMBS’05).
9. Debnath, L. (2001), Wavelet Transforms & Their Applications, Birkhäuser , Boston ,USA.
10. Misiti, M., Misiti, Y., Oppenheim, G., Poggi, J-M. (2005), Wavelet Toolbox User’s Guide-
For use with Matlab, The Mathworks Inc.
11. Meunier, B. B, Yager, R. R., and Zadeh, L. A. (Eds)(2000), Uncertainty in Intelligent and
Information Systems, World Scientific Publishing Company, Singapore.
12. Pedrycz, W. (1995) , Fuzzy Sets Engineering, CRC Press.
13. Zadeh, L. A. (1965), Fuzzy Sets, Information and Control, Vol : 8, pp. 338-353.
14. Chiu. S.L.(1997), Extracting Fuzzy Rules from Data for Function Approximation and
Pattern Classification, Chapter 9 in Fuzzy Information Engineering: A guided Tour of Ap-
plications (eds) D. Dubois, H. Prade, and R. Yager, John Wiley & Sons.
15. Morlet, J. , Aerens, G., Fourgeau, E., ans Giard, D. (1982) ,”Wave propagation and sam-
pling theory, Part I: Complex signal land scattering in multilayer media”, Journal of Geo-
physics, Vol : 47, pp. 203-221.
16. Abry, P. (1997), Ondelettes et turbulence. Multirésolutions,algorithmes de décomposition,
invariance d’échelles, Diderot Editeur, Paris.
143