A SYSTEMATIC APPROACH TO MULTIPLE DATASETS VISUALIZATION OF SCALAR VOLUME DATA
Gaurav Khanduja, Bijaya B. Karki
2006
Abstract
Many applications require simultaneous display of multiple datasets, representing multiple samples, or multiple conditions, or multiple simulation times, in the same visualization. Such multiple dataset visualization (MDV) has to handle and render massive amounts of data concurrently. We analyze the performance of two widely used techniques, namely, isosurface extraction and texture-based rendering for visualization of multiple sets of the scalar volume data. Preliminary tests performed using up to 25 sets of moderate-size (2563) data show that the calculated times for the generation and rendering of polygons representing isosurface, and for the mapping of a series of textured slices increase non-uniformly with increasing the number of individual datasets. Both techniques are found to no longer be interactive with the frame-rates dropping below one for six or more datasets. To improve the MDV frame-rate, we propose a scheme based on the combination of hardware-assisted texture mapping and general clipping. In essence, it exploits the 3D surface texture mapping by rendering only the externally visible surfaces of all volume datasets at a given instant, with dynamic clipping enabled to explore the interior of the data. The calculated frame-rates remain above one and are substantially higher than those with the other two techniques.
References
- Abrams, M. and Shaffer, C., 1996. www.sv.vt.edu/future /ari/white/abrams_shaffer.html
- Cabral, B., Cam, N. and Foran, J, 1994. Accelerated volume rendering and tomographic reconstruction using texture-mapping hardware. Proc. 1994 Symp. Volume Visualization. 91-98.
- Cline, H., Lorensen, W., Ludke S., Crawford, C., and Teter, B., 1988. Two algorithms for three dimensional reconstruction of tomographs, Medical Physics. Vol. 15.
- Codes, 2005. Electronic calculation packages: PWScf (www.pwscf.org) and VASP (cms.mpi.univie.ac.at /vasp).
- Crutcher, R.M., Baker, M.P., Baxter, H., Pixton, J. and Ravlin, H., 1996. Astronomical Data Analysis Software and Systems V, ASP Conference Series, Vol. 101.
- Cullip, T.J. and Newman, U., 1993. Accelerating volume reconstruction with 3d texture hardware. Technical Report TR93-027, University of North Carolina, Chapel Hill, N. C.
- Van Gelder, A., and Kim, K., 1996, Direct volume rendering with shading via three-dimensional textures. Proc. 1996 Symp. Vol. Visualization, 23-30.
- Khanduja, G. and Karki, B. B. 2005. Visualization of 3D scientific datasets based on interactive clipping. WSCG Int. Conf. Computer Graphics, Visualization and Computer Vision, SBN 80-903100-9-5, 33-36.
- Lacroute, P. and Levoy, M., 1994. Fast volume rendering using a shear-warp factorization of the viewing transformation. Proc. SIGGRAPH'94, 451-458.
- Levoy, M., 1990. Efficient ray tracing of volume data, ACM Trans. Comp. Graphics., 8, 245-261.
- Lorensen, W.E. and Cline H.E., 1987. Marching Cubes: a high-resolution 3D surface reconstruction algorithm. Computer Graphics Proc. SIGGRAPH, 21, 163-169.
- Meibner, M., Huang, J., Bartz, D., Mueller, K. and Crawfis, R., 2000. A practical evaluation of popular volume rendering algorithms, Proc. of the 2000 IEEE Symps. Volume Visualization, 81-90.
- Parker S., Shirley, P., Livnat, Y. Hansen, C., and Sloan, P., 1998, Interactive ray tracing for isosurface rendering, Proc. Visualization 7898, 233-238.
- Stephenson, M. B. and Christiansen, H. N., 1975. A polyhedron clipping and capping algorithm and a display system for three dimensional finite element models. ACM SIGGRAPH.
- Schulze, J.P., and Forsberg, A.S., 2004. User-friendly volume data set exploration in the Cave, www.cs.brown.edu/people/schulze/vis04-contest.
- Weiler, M., Westermann, R., Hansen, C., Zimmerman, K., and Ertl, T., 2000.. Level-of-detail volume rendering via 3D textures. In Proceedings of IEEE Volume Visualization 2000.
- Weiskopf D., Engel, K., and Ertl, T., 2003. Interactive Clipping Techniques for Texture-Based Volume Visualization and Volume Shading. IEEE Transactions on Visualization and Computer Graphic, 9, 298-312.
- Weiskopf, D., Engle, K. and Ertl, T., 2002. Volume clipping via per-fragment operations in texture-based volume visualization, IEEE Visualization Proc. 2002, 93-100.
- Westermann, R. and Ertl, T., 1998, Efficiently using graphics hardware in Volume Rendering Applications. SIGGRAPH 1998 Proc., 169-179.
- Westover, L., 1990. Footprint evaluation for volume rendering. SIGGRAPH'90, 367-376.
- Wilson B., Ma, K. and McCormick, P.S., 2002. A hardware-assisted hybrid rendering technique for interactive volume visualization. Proc Vol. Visualization and Graphics Symp. 2002.
- Forguson, 1992. Visual Kinematics, Inc. (Mountain View, CA USA), FOCUS User Manual, Release 1.2.
- Wilson, O., van Gelder, A. and Wilhems, J., 1994. Direct volume rendering via 3d textures. Technical Report UCSC-CRL-94-19, Jack Baskin School of Eng., Univ of California at Santa Cruz.
Paper Citation
in Harvard Style
Khanduja G. and B. Karki B. (2006). A SYSTEMATIC APPROACH TO MULTIPLE DATASETS VISUALIZATION OF SCALAR VOLUME DATA . In Proceedings of the First International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, ISBN 972-8865-39-2, pages 59-66. DOI: 10.5220/0001353200590066
in Bibtex Style
@conference{grapp06,
author={Gaurav Khanduja and Bijaya B. Karki},
title={A SYSTEMATIC APPROACH TO MULTIPLE DATASETS VISUALIZATION OF SCALAR VOLUME DATA},
booktitle={Proceedings of the First International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP,},
year={2006},
pages={59-66},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001353200590066},
isbn={972-8865-39-2},
}
in EndNote Style
TY - CONF
JO - Proceedings of the First International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP,
TI - A SYSTEMATIC APPROACH TO MULTIPLE DATASETS VISUALIZATION OF SCALAR VOLUME DATA
SN - 972-8865-39-2
AU - Khanduja G.
AU - B. Karki B.
PY - 2006
SP - 59
EP - 66
DO - 10.5220/0001353200590066