SPEEDING UP SNAKES

Enrico Kienel, Marek Vančo, Guido Brunnett

2006

Abstract

In this paper we summarize new and existing approaches for the semiautomatic image segmentation based on active contour models. In order to replace the manual segmentation of images of the medical research of the Center of Anatomy at the Georg August University of Go¨ ttingen we developed a user interface based on snakes. Due to the huge images (sometimes bigger than 100 megapixels) the research deals with, an efficient implementation is essential. We use a multiresolution model to achieve a fast convergence in coarse scales. The subdivision of an active contour into multiple segments and their treatment as open snakes allows us to exclude those parts of the contour from the calculation, which have already aligned with the desired curve. In addition, the band structure of the iteration matrices can be used to set up a linear algorithm for the computation of one single deformation step. Finally, we gained an acceleration of the initial computation of the Edge Map and the Gradient Vector Flow by the use of contemporary CPU architectures. Furthermore, the storage of huge images next to additional data structures, such as the Gradient Vector Flow, requires lots of memory. We show a possibility to save memory by a lossy scaling of the traditional potential image forces.

References

  1. Caselles, V., Catte, F., Coll, T., and Dibos, F. (1993). A geometric model for active contours. Numerische Mathematik, 66:1-31.
  2. Cohen, L. D. (1991). On active contour models and balloons. CVGIP: Image Understanding, 53(2):211-218.
  3. Gunn, S. R. and Nixon, M. S. (1997). A robust snake implementation; a dual active contour. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(1):63-68.
  4. Kass, M., Witkin, A., and Terzopoulos, D. (1987). Snakes: Active contour models. International Journal of Computer Vision, 1(4):321-331.
  5. Kerschner, M. (2003). Snakes für Aufgaben der digitalen Photogrammetrie und Topographie. Dissertation, Technische Universität Wien.
  6. Leroy, B., Herlin, I. L., and Cohen, L. D. (1996). Multiresolution algorithms for active contour models. In Proceedings of the 12th International Conference on Analysis and Optimization of Systems Images, Wavelets and PDE'S, Rocquencourt (France).
  7. Malladi, R., Sethian, J. A., and Vemuri, B. C. (1995). Shape modeling with front propagation: A level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(2):158-175.
  8. Mayer, H., Laptev, I., Baumgartner, A., and Steger, C. (1997). Automatic road extraction based on multiscale modeling, context, and snakes. In Theoretical and Practical Aspects of Surface Reconstruction and 3-D Object Extraction , volume 32, Part 3-2W3, pages 106-113.
  9. McInerney, T. and Terzopoulos, D. (1995). Topologically adaptable snakes. In Fifth International Conference on Computer Vision, pages 840-845. IEEE Computer Society.
  10. Neuenschwander, W. M., Fua, P., Iverson, L., Szkely, G., and Kübler, O. (1997). Ziplock snakes. International Journal of Computer Vision, 25(3):191-201.
  11. Osher, S. and Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. Journal of Computational Physics, 79(1):12-49.
  12. Perrin, D. P. and Smith, C. E. (2001). Rethinking classical internal forces for active contour models. In IEEE International Conference on Computer Vision and Pattern Recognition, pages II: 354-359.
  13. Rueckert, D. and Burger, P. (1996). A multiscale approach to contour fitting for mr images. In SPIE Conference on Medical Imaging: Image Processing, volume 2710, pages 289-300. SPIE.
  14. Xu, C. and Prince, J. L. (1997). Gradient vector flow: A new external force for snakes. In Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR 7897), pages 66-71. IEEE Computer Society.
  15. Xu, C. and Prince, J. L. (1998). Snakes, shapes, and gradient vector flow. In IEEE Transactions on Image Processing, pages 359-369. IEEE Computer Society.
Download


Paper Citation


in Harvard Style

Kienel E., Vančo M. and Brunnett G. (2006). SPEEDING UP SNAKES . In Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, ISBN 972-8865-40-6, pages 323-330. DOI: 10.5220/0001362403230330


in Bibtex Style

@conference{visapp06,
author={Enrico Kienel and Marek Vančo and Guido Brunnett},
title={SPEEDING UP SNAKES},
booktitle={Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP,},
year={2006},
pages={323-330},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001362403230330},
isbn={972-8865-40-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP,
TI - SPEEDING UP SNAKES
SN - 972-8865-40-6
AU - Kienel E.
AU - Vančo M.
AU - Brunnett G.
PY - 2006
SP - 323
EP - 330
DO - 10.5220/0001362403230330