Trans. Pattern Anal. Machine Intell, Vol. 24, No. 6,
pp. 780-788.
Othman, H., Aboulnasr, T., 2003. A separable low
complexity 2D HMM with application to face
recognition. IEEE Trans. Pattern Anal. Machine
Intell, Vol. 25, No. 10, pp. 1229-1238
.
Er, M. J., Wu, S., Lu, J., Toh, H.L., 2002. Face recognition
with radial basis function (RBF) neural networks.
IEEE Trans. Neural Networks, Vol. 13, No. 3, pp. 697
– 710.
Lee, K., Chung, Y., Byun, H., 2002. SVM-based face
verification with feature set of small size. Electronics
Letters, Vol. 38, No. 15, pp. 787-789
.
Turk, M., Pentland, A., 1991. Eigenfaces for recognition.
J. Cognitive Neurosci
.
Liu, C., Wechsler, H., 2003. Independent component
analysis of Gabor features for face recognition. IEEE
Trans. Neural Networks, Vol. 14, No. 4, pp. 919-928
.
Yu, H., Yang, J., 2001. A direct LDA algorithm for high
dimensional data―with application to face
recognition. Pattern Recognition
, Vol. 34, No. 10, pp.
2067-2070
.
Heisele, B., Ho, P., Poggio, T., 2001. Face recognition
with support vector machines: global versus
component-based approach. Proceedings of the 8
th
IEEE International Conference on Computer Vision
,Vol. 2, pp. 688 - 694
.
Vapnik, V., 1995. The nature of statistical learning
theory. ,Springer, Berlin.
Wang, Y., Chua, C. S., Ho, Y. K., 2002. Facial feature
detection and face recognition from 2D and 3D
images. Pattern Recognition Letters, Vol. 23, No. 10,
pp. 1191-1202
.
Qi, Y., Doermann, D., DeMenthon, D.,2001. Hybrid
independent component analysis and support vector
machine learning scheme for face detection.
Proceedings of the International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pp. 3327–3338
.
Fortuna, J., Capson, D., 2004. Improved support vector
classification using PCA and ICA feature
space
modification. Pattern Recognition, Vol. 37, No. 6, pp.
1117-1129
.
Bartlett, M., Sejnowski, T.,1997. Independent components
of face images: a representation for face recognition.
Proceedings of the Fourth Annual Joint
Symposium on
Neural Computation
.
Shi, Z., Tang, H., Tang, Y., 2004. A new fixed-point
algorithm for independent component analysis
. Neuro-
computing , Vol. 56, pp. 467- 473.
Cristianini, N., Shawe-Taylor, J., 2000. An Introduction to
Support Vector Machines. Cambridge University
Press
.
Georghiades, S., Belhumeur, N., Kriegman, D. J., 2001.
From few to many: illumination cone models for face
recognition under variable lighting and pose. IEEE
Trns, Pattern Anal, Machine Intell, pp. 643-660.
Fukunaga, K., 1990. Introduction to Statistical Pattern
Recognition, Academic Press,New York . 2
nd
edition.
FACIAL IMAGE FEATURE EXTRACTION USING SUPPORT VECTOR MACHINES
485