Figure 7: Results obtained on another example. The first
and second rows show the surface reconstruction of the ob-
ject. It was segmented using a TAV with 3564 nodes. The
first row shows the results of the global energy minimisation
and the second one, the results of the local energy minimi-
sation. Last row shows the execution times of both methods
using different TAV sizes.
veral sets of 3D images. The execution times were
clearly reduced and the results obtained were slightly
improved. The time differences grow exponentially
with the number of nodes since the breakings tend to
affect a lower percentage of nodes as the number of
nodes is increased.
Future work in the TAV optimisation field includes
the definition of more efficient minimisation algo-
rithms, the use of information from the domain to
guide the adjustment process when the model is ap-
plied to a specific field, and the parallelisation of the
energy minimisation stage.
REFERENCES
Barreira, N. and Penedo, M. G. (2004). Topological Active
Volumes for Segmentation and Shape Reconstruction
of Medical Images. Image Analysis and Recognition:
Lecture Notes in Computer Science, 3212:43–50.
Barreira, N. and Penedo, M. G. (2005). Topological Ac-
tive Volumes. EURASIP Journal on Applied Signal
Processing, 13(1):1937–1947.
Canny, J. (1986). A computational approach to edge-
detection. IEEE Trans. on Pattern Analysis and Ma-
chine Intelligence, 8(6):679–698.
Fan, Y., Jiang, T., and Evans, D. J. (2002). Volumetric
Segmentation of Brain Images Using Parallel Genetic
Algorithms. IEEE Transactions on Medical Imaging,
21(8):904–909.
Ferrant, M., Cuisenaire, O., Macq, B., Thiran, J., Shen-
ton, M., Kikinis, R., and Warfield, S. (2001). Surface
based atlas matching of the brain using deformable
surfaces and volumetric finite elements. In MICCAI
2001, pages pp. 1352–1353.
Kass, M., Witkin, A., and Terzopoulos, D. (1988). Active
contour models. International Journal of Computer
Vision, 1(2):321–323.
Liu, R., Shang, Y., Sachse, F. B., and Dssel, O. (2003).
3D active surface method for segmentation of medical
image data: Assessment of different image forces. In
Biomedizinische Technik, volume 48-1, pages 28–29.
Magee, D. R., Bulpitt, A. J., and Berry, E. (2001). Combin-
ing 3d deformable models and level set methods for
the segmentation of abdominal aortic aneurysms. In
BMVC.
Terzopoulos, D., Witkin, A., and Kass, M. (1988). Con-
straints on deformable models: Recovering 3D shape
and nonrigid motion. Artificial Intelligence, 36(1):91–
123.
Zhukov, L., J. Bao, I. G., Wood, J., and Breen, D. (2002).
Dynamic deformable models for mri heart segmenta-
tion. In SPIE Medical Imaging 2002.
Table 1: Normalised TAV energies obtained in the segmen-
tation processes of the examples.
TAV nodes - first example
216 400 440 528 624
Global min. 0,583 0,757 0,787 0,885 1
Local min. 0,540 0,745 0,780 0,881 0,952
TAV nodes - second example
729 1728 2744 4096 5832
Global min. 0,366 0,512 0,663 0,817 0,992
Local min. 0,365 0,511 0,665 0,816 1
TAV nodes - third example
180 847 2304 4800
Global min. 0,130 0,336 0,600 1
Local min. 0,140 0,344 0,581 0,959
TAV nodes - fourth example
847 1521 2560 3564
Global min. 0,511 0,622 0,832 1
Local min. 0,511 0,621 0,837 0,995
LOCAL ENERGY MINIMISATIONS - An Optimisation for the Topological Active Volumes Model
473