THE USE OF DYNAMICS IN GRAYLEVEL QUANTIZATION BY MORPHOLOGICAL HISTOGRAM PROCESSING

Franklin César Flores, Leonardo Bespalhuk Facci, Roberto de Alencar Lotufo

2006

Abstract

In a previous paper, it was proposed a method applied to image simplification in terms of graylevel and flat zone reduction, by histogram classification via morphological processing. It this method, it is possible to reduce the number of graylevels of an image to n graylevels by selecting n regional maxima in the processed histogram and discarding the remaining ones, in other to classify the histogram via application of watershed operator. In the previous paper, it was proposed the choice of the n highest regional maxima. By far, it is not the best criterion to choose the regional maxima and other criteria had been were tested in order to obtain a better histogram classification. In this paper we propose the selection of the regional maxima via application of dynamics, a measurement of contrast usually applied to find markers to morphological segmentation.

References

  1. Beucher, S. and Meyer, F. (1992). Mathematical Morphology in Image Processing, chapter 12. The Morphological Approach to Segmentation: The Watershed Transformation, pages 433-481. Marcel Dekker.
  2. Crespo, J., Schafer, R. W., Serra, J., Gratind, C., and Meyer, F. (1997). The flat zone approach: A general low-level region merging segmentation method. Signal Processing, 62(1):37-60.
  3. da Silva, W. D. F. (2001). Marcadore Mínimos Usando Watershed. PhD thesis, School of Electrical and Computer Engineering, State University of Campinas.
  4. F. C. Flores, S. M. P. and Zuben, F. J. V. (2002). Automatic Design of W-Operators using LVQ: Application to Morphological Image Segmentation. In IEEE Proceedings of International Joint Conference on Neural Networks (IJCNN2002), pages 1930-1935, Honolulu, Hawaii.
  5. Flores, F. C. (2000). Segmentac¸ a˜o de Seqüeˆncias de Imagens por Morfologia Matemática. Dissertac¸ a˜o de Mestrado, Instituto de Matemática e Estatística - Universidade de Sa˜o Paulo.
  6. Flores, F. C., Hirata Jr., R., Barrera, J., Lotufo, R. A., and Meyer, F. (2000). Morphological Operators for Segmentation of Color Sequences. In IEEE Proceedings of SIBGRAPI'2000, pages 300-307, Gramado, Brazil.
  7. Flores, F. C. and Lotufo, R. A. (2001). Connected Filtering by Graylevel Classification Through Morphological Histogram Processing. In IEEE Proceedings of SIBGRAPI'2001, pages 120-127, Florianopolis, Brazil.
  8. Gomes, J. and Velho, L. (1994). Computac¸ a˜o Gráfica : Imagem. IMPA/SBM, Boston.
  9. Gonzalez, R. C. and Woods, R. E. (1992). Digital Image Processing. Addison-Wesley Publishing Company.
  10. Grimaud, M. (1992). A New Measure of Contrast: the Dynamics. In SPIE, editor, Image Algebra and Morphological Image Processing III, volume 1769, pages 292-305.
  11. Heckbert, P. (1982). Color Image Quantization for Frame Buffer Display. Computer Graphics, pages 297-307.
  12. Heijmans, H. J. A. M. (1994). Morphological Image Operators. Academic Press, Boston.
  13. Heijmans, H. J. A. M. (1999). Introduction to Connected Operators. In Dougherty, E. R. and Astola, J. T., editors, Nonlinear Filters for Image Processing, pages 207-235. SPIE-The International Society for Optical Engineering,.
  14. Hirata Jr., R. (1997). Segmentac¸ a˜o de Imagens por Morfologia Matemática. Dissertac¸a˜o de Mestrado, Instituto de Matemática e Estatística - USP.
  15. Hirata Jr., R., Barrera, J., Flores, F. C., and Lotufo, R. A. (1999). Automatic Design of Morphological Operators for Motion Segmentation. In Stolfi, J. and Tozzi, C. L., editors, IEEE Proc. of Sibgrapi'99, pages 283- 292, Campinas, SP, Brazil.
  16. Meyer, F. (1996). The Dynamics of Minima and Contours. In P. Maragos, R. S. Butt, M., editor, ISMM 3rd. Computational Imaging and Vision, pages 329-336.
  17. Meyer, F. (1998). From Connected Operators to Levelings. In Heijmans, H. and Roerdink, J., editors, Mathematical Morphology and its Applications to Image and Signal Processing, Proc. ISMM'98, pages 191-198. Kluwer Academic Publishers.
  18. Meyer, F. and Beucher, S. (1990). Morphological Segmentation. Journal of Visual Communication and Image Representation, 1(1):21-46.
  19. Salembier, P. and Serra, J. (1995). Flat Zones Filtering, Connected Operators, and Filters by Reconstruction. IEEE Transactions on Image Processing, 4(8):1153- 1160.
  20. Serra, J. (1982). Image Analysis and Mathematical Morphology. Academic Press.
  21. Soille, P. (1996). Morphological Partitioning of Multiespectral Images. Electronic Imaging, 5(3):252-265.
  22. Vincent, L. and Soille, P. (1991). Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(6):583-598.
Download


Paper Citation


in Harvard Style

César Flores F., Bespalhuk Facci L. and de Alencar Lotufo R. (2006). THE USE OF DYNAMICS IN GRAYLEVEL QUANTIZATION BY MORPHOLOGICAL HISTOGRAM PROCESSING . In Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, ISBN 972-8865-40-6, pages 121-128. DOI: 10.5220/0001374501210128


in Bibtex Style

@conference{visapp06,
author={Franklin César Flores and Leonardo Bespalhuk Facci and Roberto de Alencar Lotufo},
title={THE USE OF DYNAMICS IN GRAYLEVEL QUANTIZATION BY MORPHOLOGICAL HISTOGRAM PROCESSING},
booktitle={Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP,},
year={2006},
pages={121-128},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001374501210128},
isbn={972-8865-40-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP,
TI - THE USE OF DYNAMICS IN GRAYLEVEL QUANTIZATION BY MORPHOLOGICAL HISTOGRAM PROCESSING
SN - 972-8865-40-6
AU - César Flores F.
AU - Bespalhuk Facci L.
AU - de Alencar Lotufo R.
PY - 2006
SP - 121
EP - 128
DO - 10.5220/0001374501210128