A NEW PUBLIC-KEY CRYPTOSYSTEM AND ITS APPLICATIONS

Akito Kiriyama, Yuji Nakagawa, Tadao Takaoka, Zhiqi Tu

2006

Abstract

We propose in this paper a new public-key crypto-system, called the non-linear knapsack cryptosystem. The security of this system is based on the NP-completeness of the non-linear knapsack problem. We extend the system into secret sharing and access control. That is, an encrypted message can be decrypted only when all members of a group agree to do so with their secret sub-keys. The secret sharing here is equivalent to access control, which establishes multiple identities. That is, when the verifier challenges the prover with encrypted messages with public sub-keys, the prover can prove multiple identities using the secret sub-keys. Some experimental results are given, which demonstrate the efficiency of our system.

References

  1. Adelman, L., 1983. On breaking generalized knapsack public-key cryptosystems, Porc. ACM Symp. On Theory of Computing 1983, pp402-412
  2. Borovoy, R et. al., 1996. Things that blink: Computationally augmented name tags, IBM System Journal, vol. 35, no. 3 & 4, pp488-493
  3. Chor, B. and R. L. Rivest. A, 1985. Knapsack type public key cryptosystem based on arithmetic finite fields, IEEE Trans. on Information Theory, IT-34, 1988, pp901-909
  4. Diffie, W. and M. Hellman, 1976. New directions in cryptography, IEEE Trans. on Information Theory, IT22, 6, pp644-654
  5. ElGamal, T., 1985. A public key cryptosystem based on discrete logarithms, IEEE Trans. On Information Theory, IT-31, 4, pp469-472
  6. Gennaro, R., D. Leigh, R. Sundaram, and William, 2004. Batching Schnorr identification scheme with applications to privacy-preserving authorization and low-bandwidth communication devices, AsiaCrypt 04, LNCS 3329, pp276-292
  7. Hsi, S and Fait, H., 2005. RFID enhances visitors' museum experience at the exploratorium, CACM vol. 48, no. 9, pp 60-65
  8. Lagarias, J. C., A. M. Odlyzko, 1985. Solving low density subset sum problems, JACM, vol. 32, 229- 246
  9. Lenstra, A. K., H. W. Lenstra, Jr. and L. Lovasz, 1982, Factoring polynomials with rational coefficients, Math. Ann. 261
  10. Merkle, L. C. and M. E. Hellman, 1978. Hiding information and signatures in trapdoor knapsacks, IEEE Trans. on Inf. Theory, 24, pp525-530
  11. Ohkubo, M., Suzuki, K., and Kinoshita, S., 2005. RFID privacy issues and technical challenges, CACM vol 48, no 9, pp 66-71
  12. Raskar, R, Beardsley, P, Dietz, P, and van Baar, J, 2005. Photosensing wireless tags for geometric procesures, CACM vol 48, no. 9, pp 46-51
  13. Rivest, R. L., A. Shamir and L. Adelman, 1978. A method for obtaining digital signatures and public-key cryptosystems, CACM, 21, 2, pp120-126
  14. Schnorr, C. P., 1991. Efficient signature generation by smart cards, J. of Cryptology, 4, 3, pp161-174,
  15. Shamir, A, 1979. How to share a secret, CACM vol. 22, no. 11, pp612-613
  16. Shamir, A., 1982. A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem, FOCS 1982: 145-152
Download


Paper Citation


in Harvard Style

Kiriyama A., Nakagawa Y., Takaoka T. and Tu Z. (2006). A NEW PUBLIC-KEY CRYPTOSYSTEM AND ITS APPLICATIONS . In Proceedings of the Eighth International Conference on Enterprise Information Systems - Volume 3: ICEIS, ISBN 978-972-8865-43-6, pages 524-529. DOI: 10.5220/0002451105240529


in Bibtex Style

@conference{iceis06,
author={Akito Kiriyama and Yuji Nakagawa and Tadao Takaoka and Zhiqi Tu},
title={A NEW PUBLIC-KEY CRYPTOSYSTEM AND ITS APPLICATIONS},
booktitle={Proceedings of the Eighth International Conference on Enterprise Information Systems - Volume 3: ICEIS,},
year={2006},
pages={524-529},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002451105240529},
isbn={978-972-8865-43-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Eighth International Conference on Enterprise Information Systems - Volume 3: ICEIS,
TI - A NEW PUBLIC-KEY CRYPTOSYSTEM AND ITS APPLICATIONS
SN - 978-972-8865-43-6
AU - Kiriyama A.
AU - Nakagawa Y.
AU - Takaoka T.
AU - Tu Z.
PY - 2006
SP - 524
EP - 529
DO - 10.5220/0002451105240529