A NEW PUBLIC-KEY CRYPTOSYSTEM AND ITS APPLICATIONS
Akito Kiriyama, Yuji Nakagawa, Tadao Takaoka, Zhiqi Tu
2006
Abstract
We propose in this paper a new public-key crypto-system, called the non-linear knapsack cryptosystem. The security of this system is based on the NP-completeness of the non-linear knapsack problem. We extend the system into secret sharing and access control. That is, an encrypted message can be decrypted only when all members of a group agree to do so with their secret sub-keys. The secret sharing here is equivalent to access control, which establishes multiple identities. That is, when the verifier challenges the prover with encrypted messages with public sub-keys, the prover can prove multiple identities using the secret sub-keys. Some experimental results are given, which demonstrate the efficiency of our system.
References
- Adelman, L., 1983. On breaking generalized knapsack public-key cryptosystems, Porc. ACM Symp. On Theory of Computing 1983, pp402-412
- Borovoy, R et. al., 1996. Things that blink: Computationally augmented name tags, IBM System Journal, vol. 35, no. 3 & 4, pp488-493
- Chor, B. and R. L. Rivest. A, 1985. Knapsack type public key cryptosystem based on arithmetic finite fields, IEEE Trans. on Information Theory, IT-34, 1988, pp901-909
- Diffie, W. and M. Hellman, 1976. New directions in cryptography, IEEE Trans. on Information Theory, IT22, 6, pp644-654
- ElGamal, T., 1985. A public key cryptosystem based on discrete logarithms, IEEE Trans. On Information Theory, IT-31, 4, pp469-472
- Gennaro, R., D. Leigh, R. Sundaram, and William, 2004. Batching Schnorr identification scheme with applications to privacy-preserving authorization and low-bandwidth communication devices, AsiaCrypt 04, LNCS 3329, pp276-292
- Hsi, S and Fait, H., 2005. RFID enhances visitors' museum experience at the exploratorium, CACM vol. 48, no. 9, pp 60-65
- Lagarias, J. C., A. M. Odlyzko, 1985. Solving low density subset sum problems, JACM, vol. 32, 229- 246
- Lenstra, A. K., H. W. Lenstra, Jr. and L. Lovasz, 1982, Factoring polynomials with rational coefficients, Math. Ann. 261
- Merkle, L. C. and M. E. Hellman, 1978. Hiding information and signatures in trapdoor knapsacks, IEEE Trans. on Inf. Theory, 24, pp525-530
- Ohkubo, M., Suzuki, K., and Kinoshita, S., 2005. RFID privacy issues and technical challenges, CACM vol 48, no 9, pp 66-71
- Raskar, R, Beardsley, P, Dietz, P, and van Baar, J, 2005. Photosensing wireless tags for geometric procesures, CACM vol 48, no. 9, pp 46-51
- Rivest, R. L., A. Shamir and L. Adelman, 1978. A method for obtaining digital signatures and public-key cryptosystems, CACM, 21, 2, pp120-126
- Schnorr, C. P., 1991. Efficient signature generation by smart cards, J. of Cryptology, 4, 3, pp161-174,
- Shamir, A, 1979. How to share a secret, CACM vol. 22, no. 11, pp612-613
- Shamir, A., 1982. A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem, FOCS 1982: 145-152
Paper Citation
in Harvard Style
Kiriyama A., Nakagawa Y., Takaoka T. and Tu Z. (2006). A NEW PUBLIC-KEY CRYPTOSYSTEM AND ITS APPLICATIONS . In Proceedings of the Eighth International Conference on Enterprise Information Systems - Volume 3: ICEIS, ISBN 978-972-8865-43-6, pages 524-529. DOI: 10.5220/0002451105240529
in Bibtex Style
@conference{iceis06,
author={Akito Kiriyama and Yuji Nakagawa and Tadao Takaoka and Zhiqi Tu},
title={A NEW PUBLIC-KEY CRYPTOSYSTEM AND ITS APPLICATIONS},
booktitle={Proceedings of the Eighth International Conference on Enterprise Information Systems - Volume 3: ICEIS,},
year={2006},
pages={524-529},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002451105240529},
isbn={978-972-8865-43-6},
}
in EndNote Style
TY - CONF
JO - Proceedings of the Eighth International Conference on Enterprise Information Systems - Volume 3: ICEIS,
TI - A NEW PUBLIC-KEY CRYPTOSYSTEM AND ITS APPLICATIONS
SN - 978-972-8865-43-6
AU - Kiriyama A.
AU - Nakagawa Y.
AU - Takaoka T.
AU - Tu Z.
PY - 2006
SP - 524
EP - 529
DO - 10.5220/0002451105240529