In Artificial Intelligence Research and Development,
pages 231–238. IOS Press.
Fornells, A., Camps, J., Golobardes, E., and Garrell, J.
(2005b). Incorporaci
´
on de conocimiento en forma
de restricciones sobre algoritmos evolutivos para la
b
´
usqueda de funciones de similitud. In IV Congreso
Espa
˜
nol sobre Metaheur
´
ısticas, Algoritmos Evolu-
tivos y Bioinspirados, MAEB’2005, pages 397–404.
Thomson.
Frank, E. and Witten, I. H. (1998). Generating accurate
rule sets without global optimization. In ICML ’98:
Proceedings of the Fifteenth Int. Conference on Ma-
chine Learning, pages 144–151. Morgan Kaufmann
Publishers Inc.
Freeman, J. A. and Skapura, D. M. (1991). Neural Net-
works: Algorithms, Applications and Programming
Techniques. Addison Wesley.
Freund, Y. and Schapire, R. E. (1996). Experiments with a
new boosting algorithm. In International Conference
on Machine Learning, pages 148–156.
Garrell, J., Golobardes, E., Bernad
´
o, E., and Llor
`
a, X.
(1999). Automatic diagnosis with genetic algo-
rithms and case-based reasoning. AI in Engineering,
13(4):362–367.
Goldberg, D. E. (1989). Genetic Algorithm in Search, Op-
timization, and Machine Learning. Addison-Wesley.
Golobardes, E., Llor
`
a, X., Salam
´
o, M., and Mart
´
ı, J. (2002).
Computer aided diagnosis with case-based reasoning
and genetic algorithms. Journal of Knowlegde Based
Systems, pages 45–52.
Golobardes, E., Nieto, M., Salam
´
o, M., J.Camps, Calzada,
G., Mart
´
ı, J., and Vernet, D. (2001). Generaci
´
o de fun-
cions de similitud mitjanc¸ant la programaci
´
o gen
`
etica
pel raonament basat en casos. CCIA, 25:100–107.
Heath, M., Bowyer, K., Kopans, D., Moore, R., and
Kegelmeyer, P. (2000). The digital database for
screening mammography. Int. Workshop on Dig.
Mammography.
Kauffman, G., Salfity, M., Granitto, P., and Ceccato, H.
(2000). Automated detection and classification of
clustered microcalcifications using morphological fil-
tering and statistical techniques. International Work-
shop on Digital Mammography.
Koza, J. R. (1992). Genetic Programming. Programing of
computers by means of natural selection. MIT Press.
Kwok, S. W. and Carter, C. (1990). Multiple decision trees.
In UAI ’88: Proceedings of the Fourth Annual Con-
ference on Uncertainty in Artificial Intelligence, pages
327–338. North-Holland.
Mart
´
ı, J., Espa
˜
nol, J., Golobardes, E., Freixenet, J., Garc
´
ıa,
R., and Salam
´
o, M. (2000). Classification of microcal-
cifications in digital mammograms using case-based
reasonig. Int. Workshop on Digital Mammography.
Oliver, A., Freixenet, J., Bosch, A., Raba, D., and Zwigge-
laar, R. (2005a). Automatic classification of breast tis-
sue. Iberian Conference on Pattern Recognition and
Image Analysis, pages 431–438.
Oliver, A., Freixenet, J., and Zwiggelaar, R. (2005b). Au-
tomatic classification of breast density. IEEE Interna-
tional Conference on Image Processing. to appear.
Oliver, J. J. and Dowe, D. L. (1995). On pruning and averag-
ing decision trees. In Proceedings 12th Int. Conf. Ma-
chine Learning, pages 430–437. Morgan Kaufmann.
Platt, J. (1998). Fast training of support vector machine us-
ing sequential minimal optimizations. In Sch
¨
olkipf,
B., Burges, C., and Smola, A., editors, Advances
in Kernel Methods-Support Vector Learning, Cam-
bridge, M.A. MIT PRess.
Quinlan, J. R. (1986). Induction of decision trees. Mach.
Learn., 1(1):81–106.
Quinlan, R. (1993). C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers.
Ryan, C., Collins, J. J., and O’Neill, M. (1998). Gram-
matical evolution: Evolving programs for an arbitrary
language. In Proceedings of the First European Work-
shop on Genetic Programming, volume 1391, pages
83–95. Springer-Verlag.
Samuels, T. H. (1998). Illustrated Breast Imaging Report-
ing and Data System BIRADS. American College of
Radiology Publications, 3rd edition.
Schapire, R. E., Freund, Y., Bartlett, P., and Lee, W. S.
(1997). Boosting the margin: a new explanation for
the effectiveness of voting methods. In Proc. 14th In-
ternational Conference on Machine Learning, pages
322–330. Morgan Kaufmann.
Suckling, J., Parker, J., and Dance, D. (1994). The mammo-
graphic image analysis society digital mammogram
database. In Gale, A., editor, Proc. 2nd Internat.
Workshop on Digital Mammography, pages 211–221.
Ting, K. M. and Witten, I. H. (1997a). Stacked generaliza-
tions: When does it work? In IJCAI, pages 866–873.
Ting, K. M. and Witten, I. H. (1997b). Stacking bagged and
dagged models. In Proc. 14th Int. Conference on Ma-
chine Learning, pages 367–375. Morgan Kaufmann.
Vallesp
´
ı, C., Golobardes, E., and Mart
´
ı, J. (2002). Im-
proving reliability in classification of microcalcifica-
tions in digital mammograms using case-based rea-
soning. In Proceedings of the 5th Catalonian Confer-
ence on AI: Topics in Artificial Intelligence, Lecture
Notes In Computer Science, volume 2504, pages 101–
112, London, UK. Springer-Verlag.
Winfields, D., Silbiger, M., and Brown, G. (1994). Tech-
nology transfer in digital mamography. Report of the
Joint National Cancer Institute, Workshop of May 19-
20, Invest. Radiol, pages 507–515.
Witten, I. H. and Frank., E. (2000). DataMining: Practi-
cal machine learning tools and techniques with Java
implementations. Morgan Kaufmann Publishers.
Wolpert, D. H. (1990). Stacked generalization. Technical
Report LA-UR-90-3460, The Santa Fe Institute, New
Mexic.
DECISION SUPPORT SYSTEM FOR BREAST CANCER DIAGNOSIS BY A META-LEARNING APPROACH
BASED ON GRAMMAR EVOLUTION
229