rule analysis without changing the result.
REFERENCES
Agrawal, R. and Srikant, R. (1994). Fast algorithms for
mining association rules. In Bocca, J. B., Jarke, M.,
and Zaniolo, C., editors, Proc. 20th Int. Conf. Very
Large Data Bases, VLDB, pages 487–499. Morgan
Kaufmann.
Bradley, P. S., Fayyad, U. M., and Reina, C. (1998). Scaling
clustering algorithms to large databases. In Knowl-
edge Discovery and Data Mining, pages 9–15.
Chiu, T., Fang, D., Chen, J., Wang, Y., and Jeris, C. (2001).
A robust and scalable clustering algorithm for mixed
type attributes in large database environment. In Pro-
ceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 263–268. ACM Press.
Cooley, R. (2000). Web Usage Mining: Discovery and Ap-
plication of Interesting Patterns from Web Data. PhD
thesis, University of Minnesota.
Dempster, A. P., Laird, N., and Rubin, D. (1977). Maximum
likelihood via the EM algorithm. Journal of the Royal
Statistical Society, (39):1–38.
Dhillon, S. I., Kumar, R., and Mallela, S. (2002). En-
hancded word clustering for hierarchical text classifi-
cation. In Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, pages 191–200.
Facca, F. M. and Lanzi, P. L. (2005). Mining interesting
knowledge from weblogs: a survey. Data and Knowl-
edge Engineering, 53(3):225–241.
Freitas, A. A. (2002). Data Mining and Knowledge Dis-
covery with Evolutionary Algorithms. Spinger-Verlag,
Berlin.
Gehrke, J., Ramakrishnan, R., and Ganti, V. (2000). Rain-
forest - a framework for fast decision tree construc-
tion of large datasets. Data Mining and Knowledge
Discovery, 4(2/3):127–162.
Genther, H. and Glesner, M. (1994). Automatic generation
of a fuzzy classification system using fuzzy cluster-
ing methods. In SAC ’94: Proceedings of the 1994
ACM symposium on Applied computing, pages 180–
183, New York, NY, USA. ACM Press.
Guha, S., Meyerson, A., Mishra, N., Motwani, R., and
O’Callaghan, L. (2003). Clustering data streams: The-
ory and practice. IEEE Transactions on Knowledge
and Data Engineering, 15.
Han, E.-H., Karypis, G., Kumar, V., and Mobasher, B.
(1997). Clustering based on association rule hyper-
graphs. In Research Issues on Data Mining and
Knowledge Discovery.
Han, J., Pei, J., and Yin, Y. (2000). Mining frequent patterns
without candidate generation. In Chen, W., Naughton,
J., and Bernstein, P. A., editors, 2000 ACM SIGMOD
Intl. Conference on Management of Data, pages 1–12.
ACM Press.
Kim, K. M., Park, J. J., and Song, M. H. (2004). Binary
decision tree using genetic algorithm for recognizing
defect patterns of cold mill strip. In Proc. of the
Canadian Conference on AI 2004, pages 461 – 466.
Springer.
Kruengkrai, C. and Jaruskulchai, C. (2002). A parallel
learning algorithm for text classification. In KDD
’02: Proceedings of the eighth ACM SIGKDD inter-
national conference on Knowledge discovery and data
mining, pages 201–206, New York, NY, USA. ACM
Press.
Lai, H. and Yang, T.-C. (2000). A group-based inference
approach to customized marketing on the web inte-
grating clustering and association rules techniques. In
HICSS ’00: Proceedings of the 33rd Hawaii Interna-
tional Conference on System Sciences-Volume 6, page
6054, Washington, DC, USA. IEEE Computer Soci-
ety.
Lent, B., Swami, A. N., and Widom, J. (1997). Clustering
association rules. In ICDE, pages 220–231.
Liu, B., Xia, Y., and Yu, P. S. (2000). Clustering through
decision tree construction. In CIKM ’00: Proceedings
of the ninth international conference on Information
and knowledge management, pages 20–29, New York,
NY, USA. ACM Press.
MacQueen, J. (1967). Some methods for classification and
multivariate observations. In Proceedings of the 5th
Berkeley Symp. Math. Statist, Prob.
, pages 1:281–297.
O’Callaghan, L., Mishra, N., Meyerson, A., Guha, S., and
Motwani, R. (2002). High-performance clustering of
streams and large data sets. In Proc. of the 2002 Intl.
Conf. on Data Engineering (ICDE 2002), February
2002.
Zhang, D., Gunopulos, D., Tsotras, V. J., and Seeger, B.
(2003). Temporal and spatio-temporal aggregations
over data streams using multiple time granularities.
Inf. Syst., 28(1-2):61–84.
BENEFICIAL SEQUENTIAL COMBINATION OF DATA MINING ALGORITHMS
143